刷题首页
题库
高中数学
题干
在
中,角
的对边分别为
,已知
,点
是
的中点,若
,则
面积的最大值为( )
A.
B.
C.
D.
上一题
下一题
0.99难度 单选题 更新时间:2019-11-30 12:38:08
答案(点此获取答案解析)
同类题1
为丰富市民的文化生活,市政府计划在一块半径为200m,圆心角为
的扇形地上建造市民广场,规划设计如图:内接梯形
区域为运动休闲区,其中A,B分别在半径
,
上,C,D在圆弧
上,
;上,
;
区域为文化展区,
长为
,其余空地为绿化区域,且
长不得超过200m.
(1)试确定
A
,
B
的位置,使
的周长最大?
(2)当
的周长最长时,设
,试将运动休闲区
的面积
S
表示为
的函数,并求出
S
的最大值.
同类题2
在△
ABC
中,内角∠
BAC
,∠
ABC
,
所对的边分别为
a
,
b
,
c
,
a
=
c
且满足
,若点
O
是△
ABC
外一点,
,则平面四边形
OACB
的面积的最大值为( )
A.
B.
C.12
D.
同类题3
已知函数
(
,
为常数且
),函数
的图像关于直线
对称.
(1)求函数
的最小正周期;
(2)在
中,角
、
、
的对边分别为
、
、
,若
,
,求
的
最大值.
同类题4
法国数学家费马被称为业余数学之王,很多数学定理以他的名字命名
.
对
而言,若其内部的点
P
满足
,则称
P
为
的费马点
.
如图所示,在
中,已知
,设
P
为
的费马点,且满足
,
.
(1)求
的面积;
(2)求
PB
的长度
.
同类题5
如图,在四边形
中,
,
,
,连接
,
.
(1)求
的值;
(2)若
,
,求
的面积最大值.
相关知识点
三角函数与解三角形
解三角形
解三角形的实际应用
正、余弦定理在几何中的应用