刷题首页
题库
高中数学
题干
某地拟建造一座体育馆,其设计方案侧面的外轮廓线如图所示:曲线
是以点
为圆心的圆的一部分,其中
,
是圆的切线,且
,曲线
是抛物线
的一部分,
,且
恰好等于圆
的半径.
(1)若
米,
米,求
与
的值;
(2)若体育馆侧面的最大宽度
不超过75米,求
的取值范围.
上一题
下一题
0.99难度 解答题 更新时间:2019-12-05 05:12:16
答案(点此获取答案解析)
同类题1
某山区外围有两条相互垂直的直线型公路,为进一步改善山区的交通现状,计划修建一条连接两条公路和山区边界的直线型公路,记两条相互垂直的公路为
,
,山区边界曲线为
,计划修建的公路为
,如图所示,
,
为
的两个端点,测得点
到
,
的距离分别为5千米和40千米,点
到
,
的距离分别为20千米和2.5千米,以
,
在的直线分别为
,
轴,建立平面直角坐标系
,假设曲线
符合函数
(其中
,
为常数)模型.
(1)求
,
的值;
(2)设公路
与曲线
相切于
点,
的横坐标为
.
①请写出公路
长度的函数解析式
,并写出其定义域;
②当
为何值时,公路
的长度最短?求出最短长度.
同类题2
把物体放在空气中冷却,如果物体原来的温度是
Q
1
,空气温度是
Q
0
,
t
分钟后温度
Q
可由公式
Q
=
Q
0
+(
Q
1
-
Q
0
)
e
-
t
ln1.5
求得,现在60
的物体放在15
的空气中冷却,当物体温度为35°时,冷却时间
t
=______分钟.
同类题3
某创业投资公司拟投资开发某种新能源产品,估计能获得
万元
万元的投资收益,现准备制定一个对科研课题组的奖励方案:奖金
(单位:万元)随投资收益
(单位:万元)的增加而增加,奖金不超过
万元,同时奖金不超过投资收益的
.(即:设奖励方案函数模型为
时,则公司对函数模型的基本要求是:当
时,①
是增函数;②
恒成立;③
恒成立.)
(1)判断函数
是否符合公司奖励方案函数模型的要求,并说明理由;
(2)已知函数
符合公司奖励方案函数模型要求,求实数
的取值范围.
(参考结论:函数
的增区间为
、
,减区间为
、
)
同类题4
两地相距
,现计划在两地间以
为端点的线段上,选择一点
处建造畜牧养殖场,其对两地的影响度与所选地点到两地的距离有关,对
地和
地的总影响度为对地和地的影响度之和,记点
到
地的距离为
,建在
处的畜牧养殖场对
地和
地的总影响度为
.统计调查表明:畜牧养殖场对
地的影响度与所选地点到
地的距离成反比,比例系数为
;对
地的影响度与所选地点到
地的距离成反比,比例系数为
,当畜牧养殖场建在线段
中点处时,对
地和
地的总影响度为
.
(1)将
表示为
的函数,写出函数的定义域;
(2)当点
到地
的距离为多少时,建在此处的畜牧养殖场对
地和
地的总影响度最小?并求出总影响度的最小值.
同类题5
一水池有两个进水口,一个出水口,每个进水口的进水速度如图甲所示.出水口的出水速度如图乙所示,某天0点到6点,该水池的蓄水量如图丙所示.
给出以下3个论断:①0点到3点只进水不出水;②3点到4点不进水只出水;③4点到6点不进水不出水,则一定正确的是( )
A.①
B.①②
C.①③
D.①②③
相关知识点
函数与导数
函数的应用
函数模型及其应用
函数模型的应用实例
利用给定函数模型解决实际问题