郑州地铁1号线在2013年12月28日通车之前,为了解市民对地铁票的定价意向,市物价局向社会公开征集定价意见。某学校课外小组也开展了“你认为郑州地铁起步价定为多少合适?”的问卷调查,征求市民的意见,并将某社区市民的问卷调查结果整理后制成了如下统计图:

根据统计图解答:
⑴同学们一共随机调查了 人;
⑵请你把条形统计图补充完整;
⑶假定该社共有1万人,请估计该社区支持“起步价为3元”的市民大约有多少人?

根据统计图解答:
⑴同学们一共随机调查了 人;
⑵请你把条形统计图补充完整;
⑶假定该社共有1万人,请估计该社区支持“起步价为3元”的市民大约有多少人?
如图, 某校为了解学生的课外阅读情况,就“我最喜爱的课外读物”对文学、艺术、科普和其他四个类别进行了抽样调查(每位同学只选一类),并根据调查结果绘制了两幅不完整的统计图,请你根据图中提供的信息,解答下列问题:

(1)这次被调查的学生共有多少名?
(2)请将条形统计图补充完整;并在扇形统计图中,计算出“其他类”所对应的圆心角的度数;
(3)若该校有2400名学生,请你估计该校喜爱“科普类”的学生有多少名.

(1)这次被调查的学生共有多少名?
(2)请将条形统计图补充完整;并在扇形统计图中,计算出“其他类”所对应的圆心角的度数;
(3)若该校有2400名学生,请你估计该校喜爱“科普类”的学生有多少名.
某中学为促进课堂教学,提高教学质量,对七年级学生进行了一次“你最喜欢的课堂教学方式”的问卷调查.根据收回的问卷,学校绘制了如下图表,请你根据图表中提供的信息,解答下列问题.
(1)请把三个图表中的空缺部分都补充完整;

(2)你最喜欢以上哪一种教学方式或另外的教学方式,请提出你的建议,并简要说明理由(字数在20字以内).
(1)请把三个图表中的空缺部分都补充完整;
编号 | 教学方式 | 最喜欢的频数 | 频率 |
1 | 教师讲,学生听 | 20 | 0.10 |
2 | 学生预习、学生讲解、讨论、教师点拨、检测 | | |
3 | 学生自行阅读教材,独立思考 | 30 | |
4 | 分组讨论,解决问题 | | 0.25 |

(2)你最喜欢以上哪一种教学方式或另外的教学方式,请提出你的建议,并简要说明理由(字数在20字以内).
甲、乙两校参加区教育局举办的学生英语口语竞赛,两校参赛人数相同.比赛结束后,发现参赛学生成绩分别为7分、8分、9分、10分(满分为10分).
依据统计数据绘制了如下尚不完整的统计图表.

(1)在图1中,“7分”所在扇形的圆心角等于 度;将图2的统计图补充完整;
(2)经计算,乙校的平均分是8.3分,中位数是8分,请写出甲校的平均分、中位数,并从平均分和中位数的角度分析哪所学校的成绩较好;
(3)如果该教育局要组织8人的代表队参加市级团体赛,为便于管理,决定从这两所学校中的一所挑选参赛选手,请你分析,应选哪所学校合适?
依据统计数据绘制了如下尚不完整的统计图表.

(1)在图1中,“7分”所在扇形的圆心角等于 度;将图2的统计图补充完整;
(2)经计算,乙校的平均分是8.3分,中位数是8分,请写出甲校的平均分、中位数,并从平均分和中位数的角度分析哪所学校的成绩较好;
(3)如果该教育局要组织8人的代表队参加市级团体赛,为便于管理,决定从这两所学校中的一所挑选参赛选手,请你分析,应选哪所学校合适?
某学校为了进一步丰富学生的体育活动,欲增购一些体育器材,为此对该校一部分学生进行了一次“你最喜欢的体育活动”的问卷调查(每人只选一项).根据收集到的数据,绘制成如下统计图(不完整):

请根据图中提供的信息,完成下列问题:
【小题1】(1)在这次问卷调查中,一共抽查了__________名学生;
【小题2】(2)请将上面两幅统计图补充完整;
【小题3】(3)图
中,“踢毽”部分所对应的圆心角为___________度;
【小题4】(4)如果全校有1860名学生,请问全校学生中,最喜欢“球类”活动的学生约有多少人?

请根据图中提供的信息,完成下列问题:
【小题1】(1)在这次问卷调查中,一共抽查了__________名学生;
【小题2】(2)请将上面两幅统计图补充完整;
【小题3】(3)图

【小题4】(4)如果全校有1860名学生,请问全校学生中,最喜欢“球类”活动的学生约有多少人?
为了了解2015年我市七年级学生期末考试的数学成绩,从中随机抽取了1000名学生的数学成绩进行分析,下列说法正确的是( )
A.2015年我市七年级学生是总体 |
B.样本容量是1000 |
C.1000名七年级学生是总体的一个样本 |
D.每一名七年级学生是个体 |
2016年5月9日﹣11日,贵州省第十一届旅游产业发展大会在准一市茅台镇举行,大会推出五条遵义精品旅游线路:A红色经典,B醉美丹霞,C生态茶海,D民族风情,E避暑休闲.某校摄影小社团在“祖国好、家乡美”主题宣传周里,随机抽取部分学生举行“最爱旅游路线”投票活动,参与者每人选出一条心中最爱的旅游路线,社团对投票进行了统计,并绘制出如下不完整的条形统计图和扇形统计图,请解决下列问题.
(1)本次参与投票的总人数是 人.
(2)请补全条形统计图.
(3)扇形统计图中,线路D部分的圆心角是 度.
(4)全校2400名学生中,请你估计,选择“生态茶海”路线的人数约为多少?
(1)本次参与投票的总人数是 人.
(2)请补全条形统计图.
(3)扇形统计图中,线路D部分的圆心角是 度.
(4)全校2400名学生中,请你估计,选择“生态茶海”路线的人数约为多少?

某校积极开展“阳光体育”活动,共开设了跳绳、足球、篮球、跑步四种运动项目,为了解学生最喜爱哪一种项目,随机抽取了部分学生进行调查,并绘制了如下的条形统计图和扇形统计图(部分信息未给出).

(1)求本次被调查的学生人数;
(2)补全条形统计图;
(3)该校共有1200名学生,请估计全校最喜爱篮球的人数比最喜爱足球的人数多多少?

(1)求本次被调查的学生人数;
(2)补全条形统计图;
(3)该校共有1200名学生,请估计全校最喜爱篮球的人数比最喜爱足球的人数多多少?
甲、乙两城市为了解决空气质量污染问题,对城市及其周边的环境污染进行了综合治理.在治理过程中,环保部门每月初对两个城市的空气质量进行监测,连续10个月的空气污染指数如下图所示.其中,空气污染指≤50时,空气质量为优;50<空气污染指数≤100时,空气质量为良;100<空气污染指数≤150时,空气质量为轻微污染.

(1)请填写下表:
(2)请回答下面问题:
①从平均数和中位数来分析,甲、乙两个城市的空气质量;
②从平均数和方差来分析,甲、乙两个城市的空气质量变化情况;
③根据折线图上两城市的空气污染指数的走势及优的情况来分析两城市治理环境污染的效果.

(1)请填写下表:
| 平均数 | 方差 | 中位数 | 空气质量为优的次数 |
甲 | 80 | | | 1 |
乙 | | 1060 | 80 | |
(2)请回答下面问题:
①从平均数和中位数来分析,甲、乙两个城市的空气质量;
②从平均数和方差来分析,甲、乙两个城市的空气质量变化情况;
③根据折线图上两城市的空气污染指数的走势及优的情况来分析两城市治理环境污染的效果.
“端午节”吃粽子是我国流传了上千年的习俗.某班学生在“端午节”前组织了一次综合实践活动,购买了一些材料制作爱心粽,每人从自己制作的粽子的个数,将制作粽子数量相同的学生分为一组,全班学生可分为A、B、C、D四个组,各组每人制作的粽子个数分别为4、5、6、7.根据下面不完整的统计图解答下列问题:
(1) 请补全上面两统计图
(2) 该班学生制作粽子个数的平均数是____________
(3) 若全校2000名同学一起制作粽子,这次端午节全校同学共送给敬老院的老人__________个粽子
(1) 请补全上面两统计图
(2) 该班学生制作粽子个数的平均数是____________
(3) 若全校2000名同学一起制作粽子,这次端午节全校同学共送给敬老院的老人__________个粽子
