- 数与式
- 方程与不等式
- 函数
- 图形的性质
- 图形的变化
- + 图形的平移、对称与旋转
- 平移
- 轴对称
- 旋转
- 中心对称
- 图案设计
- 图形的相似
- 锐角三角函数
- 投影与视图
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
如图,△PQR是三角形ABC经过某种变换后得到的图形.
(1)分别写出点A与P,点B与Q,点C与R的坐标;
(2)认真观察上述坐标,你发现了它们之间有怎样的关系?
(3)△ABC内有一点M(a,b),点M经过这种变换后得到点N,请你写出点N的坐标;
(4)如果网络图中每个小正方形的边长均为1,试求三角形ABC的面积.
(1)分别写出点A与P,点B与Q,点C与R的坐标;
(2)认真观察上述坐标,你发现了它们之间有怎样的关系?
(3)△ABC内有一点M(a,b),点M经过这种变换后得到点N,请你写出点N的坐标;
(4)如果网络图中每个小正方形的边长均为1,试求三角形ABC的面积.

已知P(-2,3),P1与P关于x轴对称,P2与P1关于原点对称,则P2的坐标为( )
A.(3,2) | B.(-2,-3) |
C.(-3,-2) | D.(2,3) |