- 力学
- 简谐运动的定义和描述
- + 简谐运动的弹簧振子模型
- 弹簧振子在一个周期内运动的定性规律
- 影响弹簧振子周期的物理量、周期公式
- 根据振动图象判断振子的运动状态和受力情况
- 计算弹簧振子在某段时间内的路程和位移
- 弹簧振子运动时能量的转化
- 电磁学
- 热学
- 光学
- 近代物理
- 其他
- 初中衔接知识点
- 竞赛
有一劲度系数为20N/cm的弹簧振子,其振动图象如图所示,则( )


A.图中A点对应的时刻,振子所受的弹力大小为0.5N,方向指向x轴的负方向 |
B.图中A点对应的时刻,振子的速度方向指向x轴的负方向 |
C.在0~4s内振子通过的路程为4cm,位移为0 |
D.在0~4s内振子做了1.75次全振动 |
如果摩擦和空气阻力不能忽略,那么任何物体的机械振动严格地讲都不是简谐运动,因此,振幅、周期和机槭能的变化情况是
A.振幅减小,周期减小,机械能减小 |
B.振幅减小,周期不变,机械能减小 |
C.振幅不变,周期减小,机械能减小 |
D.振幅不变,周期不变,机械能减小 |
如图所示,在光滑水平面上有一质量为m的小物块与左端固定的轻质弹簧相连,构成一个水平弹簧振子。弹簧处于原长时小物块位于O点。现使小物块在M、N两点间沿光滑水平面做简谐运动,在此过程中


A.小物块运动到M点时回复力与位移方向相同 |
B.小物块每次运动到N点时的加速度一定相同 |
C.小物块从O点向M点运动过程中做加速运动 |
D.小物块从O点向N点运动过程中机械能增加 |
弹簧振子在振动过程中
A.速度最大时,加速度为零 |
B.速度最大时,加速度也最大 |
C.速度减小时,加速度也减小 |
D.速度与加速度的方向始终相反 |
做简谐振动的水平弹簧振子,其振子的质量为m,振动过程中的最大速率为v,从某一时刻算起,在半个周期内
A.弹力的冲量一定为零 |
B.弹力的冲量大小可能是零到2mv之间的某一个值 |
C.弹力所做的功一定为零 |
D.弹力做功可能是零到![]() |
下表中给出的是做机械振动的物体的位移x或速度v与时刻的对应关系,T是振动周期.则下列选项中正确的是
| 0 | ![]() | ![]() | ![]() | T |
甲 | 零 | 正向最大 | 零 | 负向最大 | 零 |
乙 | 零 | 负向最大 | 零 | 正向最大 | 零 |
丙 | 正向最大 | 零 | 负向最大 | 零 | 正向最大 |
丁 | 负向最大 | 零 | 正向最大 | 零 | 负向最大 |
A.若甲表示位移x,则丙表示相应的速度v |
B.若乙表示位移x,则甲表示相应的速度v |
C.若丙表示位移x,则甲表示相应的速度v |
D.若丁表示位移x,则丙表示相应的速度v |
单摆摆球质量为m,摆长为
,最大偏角为
,求:
(1)摆球运动的最大加速度.
(2)摆球运动的最大速度.
(3)摆球从最大位移运动到平衡位置的过程中,重力对摆球做的功和绳子拉力做的功.


(1)摆球运动的最大加速度.
(2)摆球运动的最大速度.
(3)摆球从最大位移运动到平衡位置的过程中,重力对摆球做的功和绳子拉力做的功.
如图所示,小球在B、C之间做简谐运动,O为BC间的中点,B、C间的距离为10cm,则下列说法正确的是( )


A.小球的最大位移是10cm |
B.只有在B、C两点时,小球的振幅是5cm,在O点时,小球的振幅是0 |
C.无论小球在任何位置,它的振幅都是5cm |
D.从任意时刻起,一个周期内小球经过的路程都是20cm |
如图所示为某弹簧振子在0~5s内的振动图象,由图可知,下列说法中正确的是( )


A.振动周期为5s,振幅为8cm |
B.第2s末振子的速度为零,加速度为正向的最大值 |
C.从第1s末到第2s末振子的位移增加,振子在做加速度减小的减速运动 |
D.第3s末振子的加速度为正向的最大值 |
如图所示,质量为m的物体A放置在质量为M的物体B上,B与弹簧相连,它们一起在光滑水平面上做简谐运动,振动过程中A、B之间无相对运动,设弹簧的劲度系数为k,当物体离开平衡位置的位移为x时,A、B间摩擦力的大小等于( )


A.0 | B.kx | C.![]() | D.![]() |