1.单选题- (共8题)
2.
为了证明数轴上的点可以表示无理数,老师给学生设计了如下材料:如图,直径为1个单位长度的圆从原点沿数轴向右滚动一周,圆上一点由原点(记为点0)到达点A,点A对应的数是多少?从图中可以看出OA的长是这个圆的周长π,所以点A对应的数是π,这样,无理数π可以用数轴上的点表示出来,上述材料体现的数学思想是( )


A.方程思想 | B.从特殊到一般 | C.数形结合思想 | D.分类思想 |
3.
在庆祝党的十九大召开期间,学校用了若干盆花摆成如图所示的三角形花阵(图中的数表示花盆的编号),如果我们把这个花阵看作是一个三角形数阵,则第10行的第一盆花的编号是( )
第一行 | | | | | 1 | | | | |
第二行 | | | | 2 | 3 | 4 | | | |
第三行 | | | 5 | 6 | 7 | 8 | 9 | | |
第四行 | | 10 | 11 | 12 | 13 | 14 | 15 | 16 | |
…… | …… | …… | …… | …… | …… | …… | …… | …… | …… |
A.80 | B.81 | C.82 | D.83 |
5.
运动会上,初二(3)班啦啦队,买了两种价格的雪糕,其中甲种雪糕共花费40元,乙种雪糕共花费30元,甲种雪糕比乙种雪糕多20根.乙种雪糕价格是甲种雪糕价格的1.5倍,若设甲种雪糕的价格为x元,根据题意可列方程为( )
A.![]() | B.![]() |
C.![]() | D.![]() |
6.
小青乘飞机取旅游,从放置在座位后背的一份杂志上看到这样的一张表格:
此时飞机舱外部的温度显示为﹣22℃,地面此时温度为8℃,请你帮小青算算,他所乘坐的飞机此时距离地面( )千米.
飞机距离地面高度h(千米) | 0 | 1 | 2 | 3 | …… |
飞机舱外面的温度t(℃) | 8 | 2 | ﹣4 | ﹣10 | …… |
此时飞机舱外部的温度显示为﹣22℃,地面此时温度为8℃,请你帮小青算算,他所乘坐的飞机此时距离地面( )千米.
A.8 | B.7 | C.6 | D.5 |
8.
为了调查某小区居民的用水情况,随机抽查了若干户家庭的月用水量,结果如下表:
则关于这若干户家庭的月用水量,下列说法错误的是( )
月用水量(吨) | 3 | 4 | 5 | 8 |
户 数 | 2 | 3 | 4 | 1 |
则关于这若干户家庭的月用水量,下列说法错误的是( )
A.众数是4 | B.平均数是4.6 | C.调查了10户家庭的月用水量 | D.中位数是4.5 |
2.选择题- (共1题)
3.填空题- (共4题)
10.
互联网的时代离不开计算机,计算机的工作原理是将信息化成二进制进行处理,二进制即“逢二进一”.(1)2、(10)2、(101)2都表示二进制的数,将这些二进制数转化成十进制数,如:(1)2=1×20=1;(10)2=1×21+0×20=2;(101)2=1×22+0×21+1×20=5.则将二进制数(11011)2转化成十进制数的结果是_____.
4.解答题- (共4题)
15.
近几年来,为了缓减环境污染,某区加大了对煤改电的投资力度,该区居民在2015年有7500户完成煤改电,2017年有10800户完成了煤改电.
(1)求该区2015年至2017年完成煤改电户数的年平均增长率;
(2)2018年该区计划要完成煤改电的户数比2017年要有所增长,但增长率不超过15%,请求出2018年最多有多少户能完成煤改电.
(1)求该区2015年至2017年完成煤改电户数的年平均增长率;
(2)2018年该区计划要完成煤改电的户数比2017年要有所增长,但增长率不超过15%,请求出2018年最多有多少户能完成煤改电.
16.
如图,抛物线y=nx2﹣3nx﹣4n(n<0)与x轴交于B、C两点(点B在点C的左侧),且抛物线与y轴交于点A.
(1)点B的坐标为 ,点C的坐标为 ;
(2)若∠BAC=90°,求抛物线的解析式.
(3)点M是(2)中抛物线上的动点,点N是其对称轴上的动点,是否存在这样的点M、N,使得以A、C、M、N为顶点的四边形是平行四边形?若存在,请直接写出点M的坐标;若不存在,请说明理由.
(1)点B的坐标为 ,点C的坐标为 ;
(2)若∠BAC=90°,求抛物线的解析式.
(3)点M是(2)中抛物线上的动点,点N是其对称轴上的动点,是否存在这样的点M、N,使得以A、C、M、N为顶点的四边形是平行四边形?若存在,请直接写出点M的坐标;若不存在,请说明理由.

17.
阅读理解:
反比例函数y=
(k>0)第一象限内的图象如图1所示,点P、R是双曲线上不同的两点,过点P、R分别做PA⊥y轴于点A,RC⊥x轴于点C,两垂线交点为B.
(1)问题提出:线段PB:PA与BR:RC有怎样的关系?
问题解决:设点PA=n,PB=m,则点P的坐标为(n,
),点R的坐标为(m+n,
),AO=BC=
,RC=
,BR=
=
则BR:RC=
,
PB:PA=
∴PB:PA=BR:RC.
问题应用:
(2)利用上面的结论解决问题:
①如图1,如果BR=6,CR=3,AP=4,BP=_____.
②如图2,如果直线PR的关系式y2=﹣x+3,与x轴交于点D,与y轴交于点E,若ED=3PR,求出k的值.

反比例函数y=

(1)问题提出:线段PB:PA与BR:RC有怎样的关系?
问题解决:设点PA=n,PB=m,则点P的坐标为(n,







则BR:RC=


PB:PA=

∴PB:PA=BR:RC.
问题应用:
(2)利用上面的结论解决问题:
①如图1,如果BR=6,CR=3,AP=4,BP=_____.
②如图2,如果直线PR的关系式y2=﹣x+3,与x轴交于点D,与y轴交于点E,若ED=3PR,求出k的值.


试卷分析
-
【1】题量占比
单选题:(8道)
选择题:(1道)
填空题:(4道)
解答题:(4道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:0
5星难题:0
6星难题:8
7星难题:0
8星难题:0
9星难题:8