2017年吉林省长春七十八中中考数学一诊试卷

适用年级:
试卷号:68654

试卷类型:中考模拟
试卷考试时间:2018/1/10

1.单选题(共6题)

1.
的绝对值是(  )
A. ﹣    B.     C. D﹣
2.
已知a2﹣2a﹣1=0,则a4﹣2a3﹣2a+1等于(   )
A.0B.1C.2D.3
3.
下列各式计算正确的是(   )
A.a+2a2=3a3B.(a+b)2=a2+ab+b2
C.2(a﹣b)=2a﹣2bD.(2ab)2÷(ab)=2ab(ab≠0)
4.
如图,在一个单位为1的方格纸上,△A1A2A3,△A3A4A5,△A5A6A7,…,是斜边在x轴上、斜边长分别为2,4,6,…的等腰直角三角形.若△A1A2A3的顶点坐标分别为A1(2,0),A2(1,-1),A3(0,0),则依图中所示规律,A2017的横坐标为(   )
A.1010B.2C.1D.﹣1006
5.
如图,在平面直角坐标系xOy中,△OAB的顶点A在x轴正半轴上,OC是△OAB的中线,点B、C在反比例函数(x>0)的图象上,若△OAB的面积等于6,则k的值为(   )

A. 2    B. 4    C. 6    D. 8
6.
如图,AB∥CD,AD=CD,∠2=40°,则∠1的度数是( )
A.80°B.75°C.70°D.65°

2.填空题(共4题)

7.
计算: +(2+(π﹣1)0=_____.
8.
甲、乙两人加工一批零件,甲完成120个与乙完成100个所用的时间相同,已知甲比乙每天多完成4个.设甲每天完成x个零件,依题意列方程 _______.
9.
如图,AB是⊙O的直径,已知AB=2,C,D是⊙O的上的两点,且 ,M是AB上一点,则MC+MD的最小值是__________.
10.
如图,△ABC中,∠C=90°,AC=6,BC=8,动点P从A点出发,以1cm/s的速度,沿A﹣C﹣B向B点运动,同时,动点Q从C点出发,以2cm/s的速度,沿C﹣B﹣A向A点运动,当其中一点运动到终点时,两点同时停止运动.设运动时间为t秒,当t=_____秒时,△PCQ的面积等于8cm2

3.解答题(共7题)

11.
先化简,再求值:,其中x取-1、0、1、3中的一个值.
12.
已知关于x的一元二次方程x2﹣2(m+1)x+m2+2=0
(1)若方程有实数根,求实数m的取值范围;
(2)若方程两实数根分别为x1、x2,且满足x12+x22=10,求实数m的值.
13.
解不等式组,并判断x=3是不是这个不等式组的解.
14.
我市在党中央实施“精准扶贫”政策的号召下,大力开展科技扶贫的惠农富农,老张在科技人员的指导下,改良柑橘品种,去年他家的柑橘喜获丰收,而且质优味美,客商闻讯前来采购,经协商:采购价y(元/吨)与采购量x(吨)之间的函数关系如图所示.

(1)求y与x之间的函数关系式;
(2)老张种植柑橘的成本是800元/吨,当客商采购量是多少时,老张在这次销售柑橘时获利最大?最大利润是多少?
15.
如图,在△ABD和△FEC中,点B、C、D、E在同一直线上,且AB=FE,BC=DE,∠B=∠E.求证:AD=FC.
16.
某校决定在4月7日开展“世界无烟日”宣传活动,活动有A社区板报、B集会演讲、C喇叭广播、D发宣传画四种宣传方式.学校围绕“你最喜欢的宣传方式是什么?”在全校学生中进行随机抽样调查(四个选项中必选且只选一项),根据调查统计结果,绘制了两种不完整的统计图表:
选项
方式
百分比
A
社区板报
35%
B
集会演讲
m
C
喇叭广播
25%
D
发宣传画
10%
 
请结合统计图表,回答下列问题:
(1)本次抽查的学生共    人,m= ,并将条形统计图补充完整;
(2)若该校学生有1500人,请你估计该校喜欢“集会演讲”这项宣传方式的学生约有多少人?
(3)学校采用抽签方式让每班在A、B、C、D四种宣传方式在随机抽取两种进行展示,请用树状图或列表法求某班所抽到的两种方式恰好是“集会演讲”和“喇叭广播”的概率.
17.
如图,将矩形ABCD折叠,使点C与A点重合,折痕为EF.
(1)判断四边形AFCE的形状,并说明理由.
(2)若AB=4,BC=8,求折痕EF的长.
试卷分析
  • 【1】题量占比

    单选题:(6道)

    填空题:(4道)

    解答题:(7道)

  • 【2】:难度分析

    1星难题:0

    2星难题:0

    3星难题:0

    4星难题:4

    5星难题:0

    6星难题:9

    7星难题:0

    8星难题:1

    9星难题:3