1.单选题- (共7题)
4.
如图,反比例函数y=
(k≠0)的图象经过A,B两点,过点A作AC⊥x轴,垂足为C,过点B作BD⊥x轴,垂足为D,连接AO,连接BO交AC于点E,若OC=CD,四边形BDCE的面积为2,则k的值为( )



A.﹣![]() | B.﹣![]() | C.﹣![]() | D.﹣![]() |
2.填空题- (共5题)
10.
对于三个数a,b,c,用M{a,b,c}表示这三个数的中位数,用max{a,b,c}表示这三个数中最大的数.例如:M{﹣2,﹣1,0}=﹣1;max{﹣2,﹣1,0}=0,max{﹣2,﹣1,a}=
,根据以上材料,解决下列问题:若max{3,5﹣3x,2x﹣6}=M{1,5,3},则x的取值范围为_____.

12.
对于三个数a,b,c,用M{a,b,c}表示这三个数的中位数,用max{a,b,c}表示这三个数中最大的数.例如:M{–2,–1,0}=–1;max{–2,–1,0}=0,max{–2,–1,a}=
,根据以上材料,解决下列问题:若max{3,5–3x,2x–6}=M{1,5,3},则x的取值范围为______.

3.解答题- (共6题)
15.
已知关于x的一元二次方程(x﹣1)(x﹣2)=m(m+1)
(1)试证明:无论m取何值此方程总有两个实数根;
(2)若原方程的两根x1,x2满足x12+x22﹣x1x2=3m2+2,求m的值.
(1)试证明:无论m取何值此方程总有两个实数根;
(2)若原方程的两根x1,x2满足x12+x22﹣x1x2=3m2+2,求m的值.
16.
如图,已知抛物线y=﹣x2+bx+c与一直线相交于A(1,0)、C(﹣2,3)两点,与y轴交于点N,其顶点为

A. (1)求抛物线及直线AC的函数关系式; (2)若P是抛物线上位于直线AC上方的一个动点,求△APC的面积的最大值及此时点P的坐标; (3)在对称轴上是否存在一点M,使△ANM的周长最小.若存在,请求出M点的坐标和△ANM周长的最小值;若不存在,请说明理由. |

17.
已知:正方形ABCD,等腰直角三角形的直角顶点落在正方形的顶点D处,使三角板绕点D旋转.

(1)当三角板旋转到图1的位置时,猜想CE与AF的数量关系,并加以证明;
(2)在(1)的条件下,若DE=1,AE=
,CE=3,求∠AED的度数;
(3)若BC=4,点M是边AB的中点,连结DM,DM与AC交于点O,当三角板的一边DF与边DM重合时(如图2),若OF=
,求CN的长.

(1)当三角板旋转到图1的位置时,猜想CE与AF的数量关系,并加以证明;
(2)在(1)的条件下,若DE=1,AE=

(3)若BC=4,点M是边AB的中点,连结DM,DM与AC交于点O,当三角板的一边DF与边DM重合时(如图2),若OF=

试卷分析
-
【1】题量占比
单选题:(7道)
填空题:(5道)
解答题:(6道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:2
5星难题:0
6星难题:7
7星难题:0
8星难题:3
9星难题:6