重庆市重点中学2018年中考模拟试卷(1)数学试题

适用年级:初三
试卷号:67878

试卷类型:中考模拟
试卷考试时间:2018/4/25

1.单选题(共5题)

1.
的相反数的倒数是(  )
A.1B.﹣1C.2016D.﹣2016
2.
13个小朋友围成一圈做游戏,规则是从某一个小朋友开始按顺时针方向数数,数到第13,该小朋友离开;这样继续下去,直到最后剩下一个小朋友.小明是1号,要使最后剩下的是小明自己,他应该建议从(  )小朋友开始数起.
A.7号B.8号C.13号D.2号
3.
估计的值在   (   )
A. 1和2之间
B. 2和3之间
C. 3和4之间
D. 4和5之间
4.
的整数部分是(  )
A.3B.5C.9D.6
5.
函数y=中,自变量x的取值范围是(  )
A.x≥﹣1B.x>2C.x>﹣1且x≠2D.x≥﹣1且x≠2

2.选择题(共1题)

6.已知某几何体的三视图,如图所示,则该几何体的体积为(   )

3.填空题(共4题)

7.
计算:(﹣2+(﹣1)0=____.
8.
一个容器由上下竖直放置的两个圆柱体A,B连接而成.向该容器内匀速注水,容器内水面的高度h(厘米)与注水时间t(分)的函数关系如图所示.若上面A圆柱体的底面积是300厘米2,下面圆柱体B的底面积是500厘米2.则每分钟向容器内注水_____厘米3
9.
已知点A(5,0),点A关于直线y=kx(k>0)的对称点B正好落在反比例函数y=第一象限的图象,则k=_____.
10.
数学老师布置10道选择题作为课堂练习,科代表将全班同学的答题情况绘制成统计图(如图所示),根据统计图,全班每位同学答对的题数所组成的一组数据的中位数为__,众数为__

4.解答题(共7题)

11.
材料一:一个正整数x能写成x=a2﹣b2(a,b均为正整数,且a≠b),则称x为“雪松数”,a,b为x的一个平方差分解,在x的所有平方差分解中,若a2+b2最大,则称a,b为x的最佳平方差分解,此时F(x)=a2+b2
例如:24=72﹣52,24为雪松数,7和5为24的一个平方差分解,32=92﹣72,32=62﹣22,因为92+72>62+22,所以9和7为32的最佳平方差分解,F(32)=92+72
材料二:若一个四位正整数,它的千位数字与个位数字相同,百位数字与十位数字相同,但四个数字不全相同,则称这个四位数为“南麓数”.例如4334,5665均为“南麓数”.
根据材料回答:
(1)请直接写出两个雪松数,并分别写出它们的一对平方差分解;
(2)试证明10不是雪松数;
(3)若一个数t既是“雪松数”又是“南麓数”,并且另一个“南麓数”的前两位数字组成的两位数与后两位数字组成的两位数恰好是t的一个平方差分解,请求出所有满足条件的数t中F(t)的最大值.
12.
计算:
(1)3a(a+1)﹣(3+a)(3﹣a)﹣(2a﹣1)2
(2)(﹣x+2)÷
13.
4月初某地猪肉价格大幅度下调,下调后每千克猪肉的价格是原价格的,原来用120元买到的猪肉下调后可多买2kg.4月中旬猪肉价格开始回升,经过两个月后,猪肉价格上调为每千克28.8元.
(1)求4月初猪肉价格下调后变为每千克多少元.
(2)求5、6月份猪肉价格的月平均增长率.
14.
如图,一次函数y=k1x+b与反比例函数的图象交于A(2,m),B(n,﹣2)两点.过点B作BC⊥x轴,垂足为C,且SABC=5.

(1)求一次函数与反比例函数的解析式.
(2)根据所给条件,请直接写出不等式k1x+b>的解集;
(3)若P(p,y1),Q(﹣2,y2)是函数y=图象上的两点,且y1≥y2,求实数p的取值范围.
15.
抛物线y=ax2+bx+3(a≠0)经过点A(﹣1,0),B(,0),且与y轴相交于点C.
(1)求这条抛物线的表达式;
(2)求∠ACB的度数;
(3)设点D是所求抛物线第一象限上一点,且在对称轴的右侧,点E在线段AC上,且DE⊥AC,当△DCE与△AOC相似时,求点D的坐标.
16.
如图,分别以△ABC的两边AB和AC为边向外作正方形ANMB和正方形ACDE,NC、BE交于点P.
探究:试判断BE和CN的位置关系和数量关系,并说明理由.
应用:Q是线段BC的中点,若BC=6,则PQ=
17.
典典同学学完统计知识后,随机调查了她家所在辖区若干名居民的年龄,将调查数据绘制成如下扇形和条形统计图:

请根据以上不完整的统计图提供的信息,解答下列问题:
(1)扇形统计图中a=    ,b=    ;并补全条形统计图;
(2)若该辖区共有居民3500人,请估计年龄在0~14岁的居民的人数.
(3)一天,典典知道了辖区内60岁以上的部分老人参加了市级门球比赛,比赛的老人们分成甲、乙两组,典典很想知道甲乙两组的比赛结果,王大爷告诉说,甲组与乙组的得分和为110,甲组得分不低于乙组得分的1.5倍,甲组得分最少为多少?
试卷分析
  • 【1】题量占比

    单选题:(5道)

    选择题:(1道)

    填空题:(4道)

    解答题:(7道)

  • 【2】:难度分析

    1星难题:0

    2星难题:0

    3星难题:0

    4星难题:2

    5星难题:0

    6星难题:11

    7星难题:0

    8星难题:1

    9星难题:2