1.单选题- (共8题)
2.
体育课上,20人一组进行足球比赛,每人射点球5次,已知某一组的进球总数为49个,进球情况记录如下表,其中进2个球的有x人,进3个球的有y人,由题意列出关于x与y的方程组为( )
进球数 | 0 | 1 | 2 | 3 | 4 | 5 |
人数 | 1 | 5 | x | y | 3 | 2 |
A.![]() | B.![]() | C.![]() | D.![]() |
3.
如图1,在菱形ABCD中,∠BAD=120°,点Q是BC边的中点,点P为AB边上的一个动点,设AP=x,图1中线段PQ的长为y,若表示y与x的函数关系的图象如图2所示,则菱形ABCD的面积为( )


A.4![]() | B.2![]() | C.8![]() | D.12 |
2.填空题- (共7题)
12.
如图,平面直角坐标系中,已知
,C为y轴正半轴上一点,D为第一象限内一点,且
,
,过点D作直线
轴于B,直线AB与直线
交于点A,且
,连接CD,直线CD与直线
交于点Q,则点Q的坐标为______.








14.
已知:如图,O为坐标原点,四边形OABC为矩形,A(20,0),C(0,8),点D是OA的中点,点P在边BC上运动,当△ODP是腰长为10的等腰三角形时,则P点的坐标为_____.

3.解答题- (共5题)
18.
如图1,抛物线y=mx2﹣4mx+3m(m>0)与x轴交于A,B两点(点B在点A右侧).与y轴交点C,与直线l:y=x+1交于D、E两点,
(1)当m=1时,连接BC,求∠OBC的度数;
(2)在(1)的条件下,连接DB、EB,是否存在抛物线在第四象限上一点P,使得S△DBE=S△DPE?若存在,求出此时P点坐标及PB的长度;若不存在,请说明理由;
(3)若以DE为直径的圆恰好与x轴相切,求此时m的值.
(1)当m=1时,连接BC,求∠OBC的度数;
(2)在(1)的条件下,连接DB、EB,是否存在抛物线在第四象限上一点P,使得S△DBE=S△DPE?若存在,求出此时P点坐标及PB的长度;若不存在,请说明理由;
(3)若以DE为直径的圆恰好与x轴相切,求此时m的值.

19.
某商店以15元/件的价格购进一批纪念品销售,经过市场调查发现:若每件卖20元,则每天可以售出50件,且售价每提高1元,每天的销量会减少2件,于是该商店决定提价销售,设售价x元件,每天获利y元.
(1)求每件售价为多少元时,每天获得的利润最大?最大利润是多少?
(2)若该商店雇用人员销售,在营销之前,对支付给销售人员的工资有如下两种方案:
方案一:每天支付销售工资100元,无提成;
方案二:每销售一件提成2元,不再支付销售工资.
综合以上所有信息,请你帮着该商店老板算一算,应该采用哪种支付方案,才能使该商店每天销售该纪念品的利润最大?最大利润是多少?
(1)求每件售价为多少元时,每天获得的利润最大?最大利润是多少?
(2)若该商店雇用人员销售,在营销之前,对支付给销售人员的工资有如下两种方案:
方案一:每天支付销售工资100元,无提成;
方案二:每销售一件提成2元,不再支付销售工资.
综合以上所有信息,请你帮着该商店老板算一算,应该采用哪种支付方案,才能使该商店每天销售该纪念品的利润最大?最大利润是多少?
试卷分析
-
【1】题量占比
单选题:(8道)
填空题:(7道)
解答题:(5道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:0
5星难题:0
6星难题:9
7星难题:0
8星难题:5
9星难题:6