1.单选题- (共8题)
4.
如图,某小区有一块长为30m,宽为24m的矩形空地,计划在其中修建两块相同的矩形绿地,两块绿地的面积之和为480m2,两块绿地之间及周边有宽度相等的人形通道,设人行道的宽度为xm,根据题意,下面所列方程正确的是( )


A.![]() | B.![]() |
C.![]() | D.![]() |
5.
已知点A为某封闭图形边界上一定点,动点P从点A出发,沿其边界顺时针匀速运动一周.设点P运动的时间为x,线段AP的长为y.表示y与x的函数关系的图象大致如图所示,则该封闭图形可能是( )


A.![]() | B.![]() | C.![]() | D.![]() |
7.
如图,将一副三角板和一张对边平行的纸条按下列方式摆放,两个三角板的一直角边重合,含45°角的直角三角板的斜边与纸条一边重合,含30°角的三角板的一个顶点在纸条的另一边上,则∠1的度数是( )


A.30° | B.20° | C.15° | D.14° |
8.
如图,在△ABC中,∠ACB=90°,分别以点A ,B为圆心,大于
AB的长为半径作弧,两弧交于点M,N,作直线MN分别交AB,AC于点D,E,连接CD,BE,则下列结论中不一定正确的是( )



A.AD=BD | B.BE>CD |
C.∠BEC=∠BDC | D.BE平分∠CBD |
2.填空题- (共4题)
11.
如图,在矩形ABCD中,点G在AD上,且GD=AB=1,AG=2,点E是线段BC上的一个动点(点E不与点B,C重合),连接GB,GE,将△GBE关于直线GE对称的三角形记作△GFE,当点E运动到使点F落在矩形任意一边所在的直线上时,则所有满足条件的线段BE的长是__________.

12.
有一张矩形纸片ABCD,其中AD=8cm,上面有一个以AD为直径的半圆,正好与对边BC相切.如图1,将它沿DE折叠,使A点落在BC上,如图2,这时,半圆还露在外面的部分(阴影部分)的面积是__________cm2.



3.解答题- (共5题)
14.
夏季即将来临,某电器超市销售每台进价分别为200元、170元的A,B两种型号的电风扇,下表是近两周的销售情况:
(进价、售价均保持不变,利润=销售收入-进货成本)
(1)分别求出A,B两种型号电风扇的销售单价;
(2)若超市准备用不超过5400元的金额再采购这两种型号的电风扇共30台,求A种型号的电风扇最多能采购多少台?
(3)在(2)的条件下,超市销售完这30台电风扇能否实现利润为1400元的目标?若能,请给出相应的采购方案;若不能,请说明理由.
销售时段 | 销售数量 | 销售收入 | |
A种型号 | B种型号 | ||
第一周 | 2台 | 3台 | 1130元 |
第二周 | 5台 | 6台 | 2510元 |
(进价、售价均保持不变,利润=销售收入-进货成本)
(1)分别求出A,B两种型号电风扇的销售单价;
(2)若超市准备用不超过5400元的金额再采购这两种型号的电风扇共30台,求A种型号的电风扇最多能采购多少台?
(3)在(2)的条件下,超市销售完这30台电风扇能否实现利润为1400元的目标?若能,请给出相应的采购方案;若不能,请说明理由.
15.
如图,抛物线y=ax2+bx+6过点A(6,0),B(4,6),与y轴交于点C.
(1)求该抛物线的解析式;
(2)如图1,直线l的解析式为y=x,抛物线的对称轴与线段BC交于点P,过点P作直线l的垂线,垂足为点H,连接OP,求△OPH的面积;
(3)把图1中的直线y=x向下平移4个单位长度得到直线y=x-4,如图2,直线y=x-4与x轴交于点G.点P是四边形ABCO边上的一点,过点P分别作x轴、直线l的垂线,垂足分别为点E,F.是否存在点P,使得以P,E,F为顶点的三角形是等腰三角形?若存在,直接写出点P的坐标;若不存在,请说明理由.


(1)求该抛物线的解析式;
(2)如图1,直线l的解析式为y=x,抛物线的对称轴与线段BC交于点P,过点P作直线l的垂线,垂足为点H,连接OP,求△OPH的面积;
(3)把图1中的直线y=x向下平移4个单位长度得到直线y=x-4,如图2,直线y=x-4与x轴交于点G.点P是四边形ABCO边上的一点,过点P分别作x轴、直线l的垂线,垂足分别为点E,F.是否存在点P,使得以P,E,F为顶点的三角形是等腰三角形?若存在,直接写出点P的坐标;若不存在,请说明理由.



16.
图,反比例函数
的图象经过点A(1,4),直线y=2x+b(b≠0)与双曲线
在第一、三象限分别相交于P,Q两点,与x轴、y轴分别相交于C,D两点.(1)求k的值;(2)当b=-3时,求△OCD的面积;
(3)连接OQ,是否存在实数b,使得S△ODQ=S△OCD?若存在,请求出b的值;若不存在,请说明理由.


(3)连接OQ,是否存在实数b,使得S△ODQ=S△OCD?若存在,请求出b的值;若不存在,请说明理由.

17.
植树节期间,某校360名学生参加植树活动,要求每人植树3~6棵,活动结束后随机抽查了20名学生每人的植树量,并分为四种类型,A:3棵;B:4棵;C:5棵;D:6棵.根据各类型对应的人数绘制了扇形统计图(如图1)和尚未完成的条形统计图(如图2).请解答下列问题:


(1)将条形统计图补充完整;
(2)这20名学生每人植树量的众数为________棵,中位数为________棵;
(3)在求这20名学生每人植树量的平均数时,小宇是这样分析的:
第一步:求平均数的公式是
;
第二步:在该问题中,n=4,
,
,
,
;
第三步:
.
①小宇的分析是不正确的,他错在第几步?
请你帮他计算出正确的平均数,并估计这360名学生共植树多少棵.


(1)将条形统计图补充完整;
(2)这20名学生每人植树量的众数为________棵,中位数为________棵;
(3)在求这20名学生每人植树量的平均数时,小宇是这样分析的:
第一步:求平均数的公式是

第二步:在该问题中,n=4,




第三步:

①小宇的分析是不正确的,他错在第几步?
请你帮他计算出正确的平均数,并估计这360名学生共植树多少棵.
试卷分析
-
【1】题量占比
单选题:(8道)
填空题:(4道)
解答题:(5道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:4
5星难题:0
6星难题:2
7星难题:0
8星难题:3
9星难题:8