1.单选题- (共8题)
3.
小王沿街匀速行走,发现每隔6分钟从背后驶过一辆18路公交车,每隔3分钟从迎面驶来一辆18路公交车.假设每辆18路公交车行驶速度相同,而且18路公交车总站每隔固定时间发一辆车,那么发车间隔的时间是( )
A.3分钟 | B.4分钟 | C.5分钟 | D.6分钟 |
4.
如图,一张三角形纸片ABC,其中∠BAC=60°,BC=6,点D是BC边上一动点,将BD,CD翻折使得B′,C′分别落在AB,AC边上,(B与B′,C与C′分别对应),点D从点B运动至点C,△B′C′D面积的大小变化情况是( )


A.一直减小 | B.一直不变 | C.先减小后增大 | D.先增大后减小 |
5.
在频数分布直方图中,共有11个小长方形,若中间一个小长方形的频数等于其他10个小长方形的频数的和的
,且共有160个数据,则中间一组数据的频数是( )

A.32 | B.0.2 | C.40 | D.0.25 |
6.
把养鸡场的一次质量抽查情况作为样本,样本数据落在2.0~2.5(单位:千克)之间的频率为0.21,于是可估计这个养鸡场的2000只鸡中,质量在2.0~2.5千克之间的鸡的只数是( )
A.158 | B.1580 | C.42 | D.420 |
7.
如图,一直线与两坐标轴的正半轴分别交于A,B两点,P是线段AB上任意一点(不包括端点),过点P分别作两坐标轴的垂线与两坐标轴围成的长方形的周长为10,则该直线的函数表达式是( )


A.y=x+5 | B.y=x+10 | C.y=-x+5 | D.y=-x+10 |
8.
学校阅览室在装修过程中,准备用边长相等的正方形和正三角形两种地砖铺满地面,在每个顶点周围正方形、正三角形地砖的块数可以是( )
A.正方形2块,正三角形2块 | B.正方形2块,正三角形3块 |
C.正方形l块,正三角形2块 | D.正方形2块,正三角形l块 |
2.填空题- (共5题)
10.
在一条街AB上,甲由A向B步行,乙骑车由B向A行驶,乙的速度是甲的速度的3倍,此时公共汽车由始发站A开出向B行进,且每隔x分发一辆车,过了一段时间,甲发现每隔10分有一辆公共汽车追上他,而乙感到每隔5分就碰到一辆公共汽车,那么在始发站公共汽车发车的间隔时间x=_____分钟.
3.解答题- (共5题)
15.
某校初三(2)班课题研究小组对本校初三段全体同学的体育达标(体育成绩60分以上,含60分)情况进行调查,他们对本班50名同学的体育达标情况和其余班级同学的体育达标情况分别进行调查,数据统计如下:

根据以上统计图,请解答下面问题:
(1)初三(2)班同学体育达标率和初三段其余班级同学达标率各是多少?
(2)如果全段同学的体育达标率不低于90%,则全段同学人数不超过多少人?

根据以上统计图,请解答下面问题:
(1)初三(2)班同学体育达标率和初三段其余班级同学达标率各是多少?
(2)如果全段同学的体育达标率不低于90%,则全段同学人数不超过多少人?
16.
如图,已知正比例函数和反比例函数的图象都经过点A(﹣3,﹣3).
(1)求正比例函数和反比例函数的表达式;
(2)把直线OA向上平移后与反比例函数的图象交于点B(﹣6,m),与x轴交于点C,求m的值和直线BC的表达式;
(3)在(2)的条件下,直线BC与y轴交于点D,求以点A,B,D为顶点的三角形的面积;
(4)在(3)的条件下,点A,B,D在二次函数的图象上,试判断该二次函数在第三象限内的图象上是否存在一点E,使四边形OECD的面积S1与四边形OABD的面积S满足:S1=
S?若存在,求点E的坐标;若不存在,请说明理由.
(1)求正比例函数和反比例函数的表达式;
(2)把直线OA向上平移后与反比例函数的图象交于点B(﹣6,m),与x轴交于点C,求m的值和直线BC的表达式;
(3)在(2)的条件下,直线BC与y轴交于点D,求以点A,B,D为顶点的三角形的面积;
(4)在(3)的条件下,点A,B,D在二次函数的图象上,试判断该二次函数在第三象限内的图象上是否存在一点E,使四边形OECD的面积S1与四边形OABD的面积S满足:S1=


试卷分析
-
【1】题量占比
单选题:(8道)
填空题:(5道)
解答题:(5道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:2
5星难题:0
6星难题:6
7星难题:0
8星难题:4
9星难题:6