1.单选题- (共5题)
2.
南水北调工程在保障城市供水安全、增加首都水资源战略储备、改善居民生活用水条件、促进水资源涵养和恢复等方面,取得了重大的社会、经济、生态等综合效益.自2008年9月至2018年5月,北京已累计收水超过5 000 000 000立方米.将5 000 000 000用科学记数法表示为( )
A.0.5×1010 | B.5×1010 | C.5×109 | D.50×108 |
4.
某移动通讯公司有两种移动电话计费方式,这两种计费方式中月使用费y(元)与主叫时间x(分)的对应关系如图所示:(主叫时间不到1分钟,按1分钟收费)下列三个判断中正确的是( )
①方式一每月主叫时间为300分钟时,月使用费为88元
②每月主叫时间为350分钟和600分钟时,两种方式收费相同
③每月主叫时间超过600分钟,选择方式一更省钱

①方式一每月主叫时间为300分钟时,月使用费为88元
②每月主叫时间为350分钟和600分钟时,两种方式收费相同
③每月主叫时间超过600分钟,选择方式一更省钱

A.①② | B.①③ | C.②③ | D.①②③ |
2.选择题- (共2题)
3.填空题- (共4题)
9.
“复兴号”是我国具有完全自主知识产权、达到世界先进水平的动车组列车.“复兴号”的速度比原来列车的速度每小时快50千米,提速后从北京到上海运行时间缩短了30分钟.已知从北京到上海全程约1320千米,求“复兴号”的速度.设“复兴号”的速度为x千米/时,依题意,可列方程为__.
4.解答题- (共8题)
13.
在平面直角坐标系xOy中,直线l:y=mx﹣2m+1(m≠0).
(1)判断直线l是否经过点M(2,1),并说明理由;
(2)直线l与反比例函数y=
的图象的交点分别为点M,N,当OM=ON时,直接写出点N的坐标.
(1)判断直线l是否经过点M(2,1),并说明理由;
(2)直线l与反比例函数y=


14.
在平面直角坐标系xOy中,将任意两点P(x1,y1)与Q(x2,y2)之间的“直距”定义为:DPQ=|x1﹣x2|+|y1﹣y2|.
例如:点M(1,﹣2),点N(3,﹣5),则DMN=|1﹣3|+|﹣2﹣(﹣5)|=5.已知点A(1,0)、点B(﹣1,4).
(1)则DAO= ,DBO= ;
(2)如果直线AB上存在点C,使得DCO为2,请你求出点C的坐标;
(3)如果⊙B的半径为3,点E为⊙B上一点,请你直接写出DEO的取值范围.
例如:点M(1,﹣2),点N(3,﹣5),则DMN=|1﹣3|+|﹣2﹣(﹣5)|=5.已知点A(1,0)、点B(﹣1,4).
(1)则DAO= ,DBO= ;
(2)如果直线AB上存在点C,使得DCO为2,请你求出点C的坐标;
(3)如果⊙B的半径为3,点E为⊙B上一点,请你直接写出DEO的取值范围.

16.
数学活动课上,老师提出问题:如图,有一张长4dm,宽3dm的长方形纸板,在纸板的四个角裁去四个相同的小正方形,然后把四边折起来,做成一个无盖的盒子,问小正方形的边长为多少时,盒子的体积最大.
下面是探究过程,请补充完整:
(1)设小正方形的边长为xdm,体积为ydm3,根据长方体的体积公式得到y和x的关系式: ;
(2)确定自变量x的取值范围是 ;
(3)列出y与x的几组对应值.
(说明:表格中相关数值保留一位小数)
(4)在下面的平面直角坐标系xOy中,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象;
(5)结合画出的函数图象,解决问题:当小正方形的边长约为 dm时,盒子的体积最大,最大值约为 dm3.
下面是探究过程,请补充完整:
(1)设小正方形的边长为xdm,体积为ydm3,根据长方体的体积公式得到y和x的关系式: ;
(2)确定自变量x的取值范围是 ;
(3)列出y与x的几组对应值.
x/dm | … | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | 1 | ![]() | ![]() | … |
y/dm3 | … | 1.3 | 2.2 | 2.7 | | 3.0 | 2.8 | 2.5 | | 1.5 | 0.9 | … |
(说明:表格中相关数值保留一位小数)
(4)在下面的平面直角坐标系xOy中,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象;
(5)结合画出的函数图象,解决问题:当小正方形的边长约为 dm时,盒子的体积最大,最大值约为 dm3.

试卷分析
-
【1】题量占比
单选题:(5道)
选择题:(2道)
填空题:(4道)
解答题:(8道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:1
5星难题:0
6星难题:11
7星难题:0
8星难题:3
9星难题:2