1.单选题- (共5题)
3.
已知:如图,点P是正方形ABCD的对角线AC上的一个动点(A、C除外),作PE⊥AB于点E,作PF⊥BC于点F,设正方形ABCD的边长为x,矩形PEBF的周长为y,在下列图象中,大致表示y与x之间的函数关系的是( )

A.
B.
C.
D. 

A.




2.填空题- (共5题)
8.
已知反比例函数y=
在第二象限内的图象如图,经过图象上两点A、E分别引y轴与x轴的垂线,交于点C,且与y轴与x轴分别交于点M、B.连接OC交反比例函数图象于点D,且
,连接OA,OE,如果△AOC的面积是15,则△ADC与△BOE的面积和为_____.



3.解答题- (共6题)
12.
某商场计划购进A,B两种新型节能台灯共100盏,这两种台灯的进价、售价如下表:
(1)若商场预计进货款为3500元,则这两种台灯各进多少盏.
(2)若设商场购进A型台灯m盏,销售完这批台灯所获利润为P,写出P与m之间的函数关系式.
(3)若商场规定B型灯的进货数量不超过A型灯数量的4倍,那么A型和B型台灯各进多少盏售完之后获得利润最多?此时利润是多少元.
类型 | 价格 | 进价(元/盏) | 售价(元![]() |
A型 | 30 | 45 | |
B型 | 50 | 70 |
(1)若商场预计进货款为3500元,则这两种台灯各进多少盏.
(2)若设商场购进A型台灯m盏,销售完这批台灯所获利润为P,写出P与m之间的函数关系式.
(3)若商场规定B型灯的进货数量不超过A型灯数量的4倍,那么A型和B型台灯各进多少盏售完之后获得利润最多?此时利润是多少元.
13.
如图,已知抛物线y=ax2﹣2ax+b与x轴交于A、B(3,0)两点,与y轴交于点C,且OC=3OA,设抛物线的顶点为D.
(1)求抛物线的解析式;
(2)在抛物线对称轴的右侧的抛物线上是否存在点P,使得△PDC是等腰三角形?若存在,求出符合条件的点P的坐标;若不存在,请说明理由;
(3)若平行于x轴的直线与该抛物线交于M、N两点(其中点M在点N的右侧),在x轴上是否存在点Q,使△MNQ为等腰直角三角形?若存在,请求出点Q的坐标;若不存在,请说明理由.
(1)求抛物线的解析式;
(2)在抛物线对称轴的右侧的抛物线上是否存在点P,使得△PDC是等腰三角形?若存在,求出符合条件的点P的坐标;若不存在,请说明理由;
(3)若平行于x轴的直线与该抛物线交于M、N两点(其中点M在点N的右侧),在x轴上是否存在点Q,使△MNQ为等腰直角三角形?若存在,请求出点Q的坐标;若不存在,请说明理由.

14.
已知,如图所示直线y=kx+2(k≠0)与反比例函数y=
(m≠0)分别交于点P,与y轴、x轴分别交于点A和点B,且cos∠ABO=
,过P点作x轴的垂线交于点C,连接AC,
(1)求一次函数的解析式.
(2)若AC是△PCB的中线,求反比例函数的关系式.


(1)求一次函数的解析式.
(2)若AC是△PCB的中线,求反比例函数的关系式.

15.
如图,Rt△ABC中,∠ABC=90°,点D,F分别是AC,AB的中点,CE∥DB,BE∥D

A. (1)求证:四边形DBEC是菱形; (2)若AD=3, DF=1,求四边形DBEC面积. |

试卷分析
-
【1】题量占比
单选题:(5道)
填空题:(5道)
解答题:(6道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:0
5星难题:0
6星难题:9
7星难题:0
8星难题:2
9星难题:5