1.单选题- (共8题)
8.
如图,点P是矩形ABCD的对角线AC上一点,过点P作EF∥BC,分别交AB,CD于E、F,连接PB、PD.若AE=2,PF=8.则图中阴影部分的面积为( )


A.10 | B.12 | C.16 D. 18 |
2.填空题- (共5题)
12.
如图抛物线y=x2+2x﹣3与x轴交于A,B两点,与y轴交于点C,点P是抛物线对称轴上任意一点,若点D、E、F分别是BC、BP、PC的中点,连接DE,DF,则DE+DF的最小值为_____.

3.解答题- (共7题)
16.
在水果销售旺季,某水果店购进一优质水果,进价为20元/千克,售价不低于20元/千克,且不超过32元/千克,根据销售情况,发现该水果一天的销售量y(千克)与该天的售价x(元/千克)满足如下表所示的一次函数关系.
(1)某天这种水果的售价为23.5元/千克,求当天该水果的销售量.
(2)如果某天销售这种水果获利150元,那么该天水果的售价为多少元?
销售量y(千克) | … | 34.8 | 32 | 29.6 | 28 | … |
售价x(元/千克) | … | 22.6 | 24 | 25.2 | 26 | … |
(1)某天这种水果的售价为23.5元/千克,求当天该水果的销售量.
(2)如果某天销售这种水果获利150元,那么该天水果的售价为多少元?
17.
在平面直角坐标系中,二次函数y=ax2+
x+c的图象经过点C(0,2)和点D(4,﹣2).点E是直线y=﹣
x+2与二次函数图象在第一象限内的交点.
(1)求二次函数的解析式及点E的坐标.
(2)如图①,若点M是二次函数图象上的点,且在直线CE的上方,连接MC,OE,M
(3)如图②,经过A、B、C三点的圆交y轴于点F,求点F的坐标.


(1)求二次函数的解析式及点E的坐标.
(2)如图①,若点M是二次函数图象上的点,且在直线CE的上方,连接MC,OE,M
A.求四边形COEM面积的最大值及此时点M的坐标. |

18.
如图,正方形ABCD的对角线交于点O,点E、F分别在AB、BC上(AE<BE),且∠EOF=90°,OE、DA的延长线交于点M,OF、AB的延长线交于点N,连接MN.
(1)求证:OM=ON.
(2)若正方形ABCD的边长为4,E为OM的中点,求MN的长.
(1)求证:OM=ON.
(2)若正方形ABCD的边长为4,E为OM的中点,求MN的长.

19.
如图,AB是半圆O的直径,C是AB延长线上的点,AC的垂直平分线交半圆于点D,交AC于点E,连接DA,D

A.已知半圆O的半径为3,BC=2. (1)求AD的长. (2)点P是线段AC上一动点,连接DP,作∠DPF=∠DAC,PF交线段CD于点 | B.当△DPF为等腰三角形时,求AP的长. |

试卷分析
-
【1】题量占比
单选题:(8道)
填空题:(5道)
解答题:(7道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:3
5星难题:0
6星难题:14
7星难题:0
8星难题:1
9星难题:2