1.单选题- (共10题)
5.
衡阳市某生态示范园计划种植一批梨树,原计划总产值30万千克,为了满足市场需求,现决定改良梨树品种,改良后平均每亩产量是原来的1.5倍,总产量比原计划增加了6万千克,种植亩数减少了10亩,则原来平均每亩产量是多少万千克?设原来平均每亩产量为
万千克,根据题意,列方程为




A.![]() | B.![]() |
C.![]() | D.![]() |
7.
如图, 抛物线
与
轴交于点A(-1,0),顶点坐标(1,n)与
轴的交点在(0,2),(0,3)之间(包 含端点),则下列结论:①
;②
;③对于任意实数m,
总成立;④关于
的方程
有两个不相等的实数根.其中结论正确的个数为













A.1 个 | B.2 个 | C.3 个 | D.4 个 |
2.填空题- (共5题)
15.
某公司有10名工作人员,他们的月工资情况如表,根据表中信息,该公司工作人员的月工资的众数是__ .
职务 | 经理 | 副经理 | ![]() | ![]() | ![]() |
人数 | 1 | 2 | 2 | 4 | 1 |
月工资(万元/人) | 2 | 1.2 | 0.8 | 0.6 | 0.4 |
3.解答题- (共5题)
17.
一名在校大学生利用“互联网+”自主创业,销售一种产品,这种产品的成本价10元/件,已知销售价不低于成本价,且物价部门规定这种产品的销售价不高于16元/件,市场调查发现,该产品每天的销售量
(件
与销售价
(元/件)之间的函数关系如图所示.
(1)求
与
之间的函数关系式,并写出自变量
的取值范围;
(2)求每天的销售利润W(元
与销售价
(元/件)之间的函数关系式,并求出每件销售价为多少元时,每天的销售利润最大?最大利润是多少?



(1)求



(2)求每天的销售利润W(元



18.
如图,已知直线
分别交
轴、
轴于点A、B,抛物线过A,B两点,点P是线段AB上一动点,过点P作PC
轴于点C,交抛物线于点D.
(1)若抛物线的解析式为
,设其顶点为M,其对称轴交AB于点N.
①求点M、N的坐标;
②是否存在点P,使四边形MNPD为菱形?并说明理由;
(2)当点P的横坐标为1时,是否存在这样的抛物线,使得以B、P、D为顶点的三角形与
AOB相似?若存在,求出满足条件的抛物线的解析式;若不存在,请说明理由.





(1)若抛物线的解析式为

①求点M、N的坐标;
②是否存在点P,使四边形MNPD为菱形?并说明理由;
(2)当点P的横坐标为1时,是否存在这样的抛物线,使得以B、P、D为顶点的三角形与


19.
如图,在Rt
ABC中,∠C=90°,AC=BC=4cm,动点P从点C出发以1cm/s的速度沿CA匀速运动,同时动点Q从点A出发以
的速度沿AB匀速运动,当点P到达点A时,点P、Q同时停止运动,设运动时间为他t(s).
(1)当t为何值时,点B在线段PQ的垂直平分线上?
(2)是否存在某一时刻t,使
APQ是以PQ为腰的等腰三角形?若存在,求出
的值;若不存在,请说明理由;
(3)以PC为边,往CB方向作正方形CPMN,设四边形QNCP的面积为S,求S关于t的函数关系式.


(1)当t为何值时,点B在线段PQ的垂直平分线上?
(2)是否存在某一时刻t,使


(3)以PC为边,往CB方向作正方形CPMN,设四边形QNCP的面积为S,求S关于t的函数关系式.

试卷分析
-
【1】题量占比
单选题:(10道)
填空题:(5道)
解答题:(5道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:0
5星难题:0
6星难题:16
7星难题:0
8星难题:1
9星难题:3