1.单选题- (共2题)
2.填空题- (共1题)
3.解答题- (共2题)
4.
设椭圆
的左焦点为
,下顶点为
,上顶点为
,
是等边三角形.
(Ⅰ)求椭圆的离心率;
(Ⅱ)设直线
,过点
且斜率为
的直线与椭圆交于点
异于点
,线段
的垂直平分线与直线
交于点
,与直线
交于点
,若
.
(ⅰ)求
的值;
(ⅱ)已知点
,点
在椭圆上,若四边形
为平行四边形,求椭圆的方程.





(Ⅰ)求椭圆的离心率;
(Ⅱ)设直线












(ⅰ)求

(ⅱ)已知点



5.
某手机商家为了更好地制定手机销售策略,随机对顾客进行了一次更换手机时间间隔的调查.从更换手机的时间间隔不少于3个月且不超过24个月的顾客中选取350名作为调查对象,其中男性顾客和女性顾客的比为
,商家认为一年以内(含一年)更换手机为频繁更换手机,否则视为未频繁更换手机.现按照性别采用分层抽样的方法从中抽取105人,并按性别分为两组,得到如下表所示的频数分布表:
(1)计算表格中x,y的值;
(2)若以频率作为概率,从已抽取的105名且更换手机时间间隔为3至6个月(含3个月和6个月)的顾客中,随机抽取2人,求这2人均为男性的概率;
(3)请根据频率分布表填写
列联表,并判断是否有
以上的把握认为“频繁更换手机与性别有关”.
附表及公式:


事件间隔(月) | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
男性 | x | 8 | 9 | 18 | 12 | 8 | 4 |
女性 | y | 2 | 5 | 13 | 11 | 7 | 2 |
(1)计算表格中x,y的值;
(2)若以频率作为概率,从已抽取的105名且更换手机时间间隔为3至6个月(含3个月和6个月)的顾客中,随机抽取2人,求这2人均为男性的概率;
(3)请根据频率分布表填写


| 频繁更换手机 | 未频繁更换手机 | 合计 |
男性顾客 | | | |
女性顾客 | | | |
合计 | | | |
附表及公式:
P(![]() | 0.100 | 0.050 | 0.010 | 0.001 |
![]() | 2.706 | 3.841 | 6.635 | 10.828 |

试卷分析
-
【1】题量占比
单选题:(2道)
填空题:(1道)
解答题:(2道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:0
5星难题:0
6星难题:0
7星难题:0
8星难题:0
9星难题:5