1.单选题- (共7题)
2.
把三角形按如图所示的规律拼图案,其中第①个图案中有1个三角形,第②个图案中有4个三角形,第③个图案中有8个三角形,…,按此规律排列下去,则第⑦个图案中三角形的个数为( )


A.15 | B.17 | C.19 | D.24 |
2.填空题- (共3题)
8.
小明家阳台的地面是一个矩形,工人师傅要给地面铺上地砖,已知阳台的长和宽都大于60cm,且长是宽的2倍,小明要求工人师傅只能使用完整的60×60的方砖(即边长是60cm的正方形),但无论怎么铺设,被覆盖的面积都不超过阳台总面积的40%,则小明家阳台的地面至少为_____平方米.
9.
A,B两地之间有一条直线跑道,甲,乙两人分别从A,B同时出发,相向而行匀速跑步,且乙的速度是甲速度的80%,当甲,乙分别到达B地,A地后立即调头往回跑,甲的速度保持不变,乙的速度提高25%(仍保持匀速前行),甲,乙两人之间的距离y(米)与跑步时间x(分钟)之间的关系如图所示,则他们在第二次相遇时距B地_____米.

3.解答题- (共7题)
12.
若一个四位正整数s,中间两位均为3,则称这个四位正整数为“三中全会数”;若将这个“三中全会数”的个位与千位交换位置得到新的正整数记为s',并记F(s)=
.例如:F(4331)=
.
(1)最小的“三中全会数”是 ;F(2331)= ;
(2)若“三中全会数”的个位与千位数字恰好相同,则又称这个四位正整数为“三中对称数”,若“三中全会数”x,y中x恰好是“三中对称数”,且F(x)能被11整除;F(y)﹣2F(x)=31,求出“三中全会数”y的所有可能值.




(1)最小的“三中全会数”是 ;F(2331)= ;
(2)若“三中全会数”的个位与千位数字恰好相同,则又称这个四位正整数为“三中对称数”,若“三中全会数”x,y中x恰好是“三中对称数”,且F(x)能被11整除;F(y)﹣2F(x)=31,求出“三中全会数”y的所有可能值.
14.
九月石榴全面上市,其中新品种突尼斯软籽石榴因其个大多汁,其籽可直接吞食而深受大家喜爱,但突尼斯软籽石榴一直因技术问题产量不多,今年终于突破研究大量上市,某超市准备大量进货,已知去年同期普通石榴进价3元/斤,突尼斯软籽石榴进价10元/斤,去年九月共进货900斤.
(1)若去年九月两种石榴进货总价不超过6200元,则突尼斯软籽石榴最多能购进多少斤?
(2)若超市今年九月上半月共购进1000斤的石榴,其中普通石榴进价与去年相同,突尼斯软籽石榴进价降4元,结果普通石榴按8元/斤,突尼斯软籽石榴16元/斤的价格卖出后共获利8000元,下半月因临近中秋和国庆双节,两种石榴进价在上半月基础上保持不变,售价一路上涨,超市调整计划,普通石榴进货量与上半月持平,售价下降a%吸引顾客;突尼斯软籽石榴进货量上涨
a%,售价上涨2a%,最后截至九月底,下半月获利比上半月的2倍少400元,求a的值.
(1)若去年九月两种石榴进货总价不超过6200元,则突尼斯软籽石榴最多能购进多少斤?
(2)若超市今年九月上半月共购进1000斤的石榴,其中普通石榴进价与去年相同,突尼斯软籽石榴进价降4元,结果普通石榴按8元/斤,突尼斯软籽石榴16元/斤的价格卖出后共获利8000元,下半月因临近中秋和国庆双节,两种石榴进价在上半月基础上保持不变,售价一路上涨,超市调整计划,普通石榴进货量与上半月持平,售价下降a%吸引顾客;突尼斯软籽石榴进货量上涨

15.
如图1,在平面直角坐标系中,抛物线y=
与x轴交于A,B两点,交y轴于点C,连接B


A.过点A作BC的平行线交抛物线于点 | B. (1)求△ABC的面积; (2)已知点M是抛物线的顶点,在直线AD上有一动点E,x轴上有一动点F,当ME+BE最小时,求|CF﹣EF|的最大值及此时点F的坐标; (3)如图2,在y轴正半轴上取点Q,使得CB=CQ,点P是x轴上一动点,连接PC,将△CPQ沿PC折叠至△CPQ′.连接BQ,BQ′,QQ′,当△BQQ′为等腰三角形时,直接写出点P的坐标. |

16.
如图,在平面直角坐标系中,一次函数y1=ax+b(a≠0)的图象与反比例函数y2=
(k≠0)的图象交于A、C两点,与x轴交于点D,过点A作AB⊥x轴于点B,点O是线BD的中点,AD=2
,cos∠ADB=
.
(1)求该反比例函数和一次函数的解析式;
(2)直接写出当x为何值时,y1≥y2.



(1)求该反比例函数和一次函数的解析式;
(2)直接写出当x为何值时,y1≥y2.

试卷分析
-
【1】题量占比
单选题:(7道)
填空题:(3道)
解答题:(7道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:0
5星难题:0
6星难题:6
7星难题:0
8星难题:7
9星难题:4