1.单选题- (共9题)
2.
12月2日,2018年第十三届南宁
国际马拉松比赛开跑,2.6万名跑者继续刷新南宁马拉松的参与人数纪录!把2.6万用科学记数法表示为( )

A.0.26×103 | B.2.6×103 | C.0.26×104 | D.2.6×104 |
5.
如图1.已知正△ABC中,E,F,G分别是AB,BC,CA上的点,且AE=BF=CG,设△EFG的面积为y,AE的长为x,y关于x的函数图象如图2,则△EFG的最小面积为( )


A.![]() | B.![]() | C.2 | D.![]() |
2.填空题- (共2题)
11.
如图,在每个小正方形的边长为1的网格中,点A,B,C均在格点上.
(Ⅰ)AC的长等于_____;
(Ⅱ)在线段AC上有一点D,满足AB2=AD•AC,请在如图所示的网格中,用无刻度的直尺,画出点D,并简要说明点D的位置是如何找到的(不要求证明)_____.
(Ⅰ)AC的长等于_____;
(Ⅱ)在线段AC上有一点D,满足AB2=AD•AC,请在如图所示的网格中,用无刻度的直尺,画出点D,并简要说明点D的位置是如何找到的(不要求证明)_____.

3.解答题- (共6题)
13.
(本题9分)学校准备购进一批A、B两型号节能灯,已知2只A型节能灯和3只B型节能灯共需31元;1只A型节能灯和2只B型节能灯共需19元.
(1)求一只A型节能灯和一只B型节能灯的售价各是多少元?
(2)学校准备购进这两种型号的节能灯共100只,并且A型节能灯的数量不多于B型节能灯数量的2倍,请设计出最省钱的购买方案.
(1)求一只A型节能灯和一只B型节能灯的售价各是多少元?
(2)学校准备购进这两种型号的节能灯共100只,并且A型节能灯的数量不多于B型节能灯数量的2倍,请设计出最省钱的购买方案.
14.
在平面直角坐标系中,抛物线y
x2沿x轴正方向平移后经过点A(x1,y2),B(x2,y2),其中x1,x2是方程x2﹣2x=0的两根,且x1>x2,
(1)如图.求A,B两点的坐标及平移后抛物线的解析式;
(2)平移直线AB交抛物线于M,交x轴于N,且
,求△MNO的面积;
(3)如图,点C为抛物线对称轴上顶点下方的一点,过点C作直线交抛物线于E、F,交x轴于点D,探究
的值是否为定值?如果是,求出其值;如果不是,请说明理由.

(1)如图.求A,B两点的坐标及平移后抛物线的解析式;
(2)平移直线AB交抛物线于M,交x轴于N,且

(3)如图,点C为抛物线对称轴上顶点下方的一点,过点C作直线交抛物线于E、F,交x轴于点D,探究


15.
直线y=kx+b与反比例函数
(x>0)的图象分别交于点A(m,4)和点B(8,n),与坐标轴分别交于点C和点

A.![]() (1)求直线AB的解析式; (2)观察图象,当x>0时,直接写出 ![]() (3)若点P是x轴上一动点,当△COD与△ADP相似时,求点P的坐标. |
16.
如图1,在Rt△ABC中,∠A=90°,AB=AC,点D,E分别在边AB,AC上,AD=AE,连接DC,点M,P,N分别为DE,DC,BC的中点.
(1)观察猜想:
图1中,线段PM与PN的数量关系是 ,位置关系是 ;
(2)探究证明:
把△ADE绕点A逆时针方向旋转到图2的位置,连接MN,BD,CE,判断△PMN的形状,并说明理由;
(3)拓展延伸:
把△ADE绕点A在平面内自由旋转,若AD=4,AB=10,请直接写出△PMN面积的最大值.
(1)观察猜想:
图1中,线段PM与PN的数量关系是 ,位置关系是 ;
(2)探究证明:
把△ADE绕点A逆时针方向旋转到图2的位置,连接MN,BD,CE,判断△PMN的形状,并说明理由;
(3)拓展延伸:
把△ADE绕点A在平面内自由旋转,若AD=4,AB=10,请直接写出△PMN面积的最大值.

试卷分析
-
【1】题量占比
单选题:(9道)
填空题:(2道)
解答题:(6道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:4
5星难题:0
6星难题:7
7星难题:0
8星难题:3
9星难题:3