河南省新乡市2019届九年级第二次全真模拟考试数学试题

适用年级:初三
试卷号:65058

试卷类型:中考模拟
试卷考试时间:2019/5/6

1.单选题(共9题)

1.
﹣2的绝对值是(  )
A.﹣2B.C.D.2
2.
12月2日,2018年第十三届南宁国际马拉松比赛开跑,2.6万名跑者继续刷新南宁马拉松的参与人数纪录!把2.6万用科学记数法表示为(  )
A.0.26×103B.2.6×103C.0.26×104D.2.6×104
3.
不等式组的解在数轴上表示为(   )
A.B.
C.D.
4.
如图,等边三角形ABCB点在坐标原点,C点的坐标为(4,0),则点A的坐标为(  )
A.(2,3)B.(2,2C.(2,2)D.(2,2
5.
如图1.已知正△ABC中,E,F,G分别是AB,BC,CA上的点,且AE=BF=CG,设△EFG的面积为y,AE的长为x,y关于x的函数图象如图2,则△EFG的最小面积为(  )
A.B.C.2D.
6.
从上面看如图中的几何体,得到的平面图形正确的是(  )
A.B.
C.D.
7.
如图,ABCD,直线MNABCD分别交于点EFFG平分∠EFDEGFG于点G,若∠CFN=110°,则∠BEG=(  )
A.20°B.25°C.35°D.40°
8.
某车间需加工一批零件,车间20名工人每天加工零件数如表所示:
每天加工零件数
4
5
6
7
8
人数
3
6
5
4
2
 
每天加工零件数的中位数和众数为(   )
A.6,5B.6,6C.5,5D.5,6
9.
如图,菱形,对角线相交于点,点中点,且,则的面积为(   )
A.B.C.D.2

2.填空题(共2题)

10.
在直角坐标系中,已知直线经过点和点,抛物线y=ax2-x+2(a≠0)与线段MN有两个不同的交点,则a的取值范围是______.
11.
如图,在每个小正方形的边长为1的网格中,点A,B,C均在格点上.
(Ⅰ)AC的长等于_____;
(Ⅱ)在线段AC上有一点D,满足AB2=AD•AC,请在如图所示的网格中,用无刻度的直尺,画出点D,并简要说明点D的位置是如何找到的(不要求证明)_____.

3.解答题(共6题)

12.
先化简,再求值:,其中x=﹣1.
13.
(本题9分)学校准备购进一批A、B两型号节能灯,已知2只A型节能灯和3只B型节能灯共需31元;1只A型节能灯和2只B型节能灯共需19元.
(1)求一只A型节能灯和一只B型节能灯的售价各是多少元?
(2)学校准备购进这两种型号的节能灯共100只,并且A型节能灯的数量不多于B型节能灯数量的2倍,请设计出最省钱的购买方案.
14.
在平面直角坐标系中,抛物线yx2沿x轴正方向平移后经过点Ax1y2),Bx2y2),其中x1x2是方程x2﹣2x=0的两根,且x1x2
(1)如图.求AB两点的坐标及平移后抛物线的解析式;
(2)平移直线AB交抛物线于M,交x轴于N,且,求△MNO的面积;
(3)如图,点C为抛物线对称轴上顶点下方的一点,过点C作直线交抛物线于EF,交x轴于点D,探究的值是否为定值?如果是,求出其值;如果不是,请说明理由.
15.
直线y=kx+b与反比例函数(x>0)的图象分别交于点A(m,4)和点B(8,n),与坐标轴分别交于点C和点
A.

(1)求直线AB的解析式;
(2)观察图象,当x>0时,直接写出的解集;
(3)若点P是x轴上一动点,当△COD与△ADP相似时,求点P的坐标.
16.
如图1,在Rt△ABC中,∠A=90°,AB=AC,点D,E分别在边AB,AC上,AD=AE,连接DC,点M,P,N分别为DE,DC,BC的中点.
(1)观察猜想:
图1中,线段PM与PN的数量关系是    ,位置关系是    
(2)探究证明:
把△ADE绕点A逆时针方向旋转到图2的位置,连接MN,BD,CE,判断△PMN的形状,并说明理由;
(3)拓展延伸:
把△ADE绕点A在平面内自由旋转,若AD=4,AB=10,请直接写出△PMN面积的最大值.
17.
为了解某校九年级男生的体能情况,体育老师从中随机抽取部分男生进行引体向上测试,并对成绩进行了统计,绘制成尚不完整的扇形图和条形图,根据图形信息回答下列问题:
(1)本次抽测的男生有    人,抽测成绩的众数是    
(2)请将条形图补充完整;
(3)若规定引体向上6次以上(含6次)为体能达标,则该校125名九年级男生中估计有多少人体能达标?
试卷分析
  • 【1】题量占比

    单选题:(9道)

    填空题:(2道)

    解答题:(6道)

  • 【2】:难度分析

    1星难题:0

    2星难题:0

    3星难题:0

    4星难题:4

    5星难题:0

    6星难题:7

    7星难题:0

    8星难题:3

    9星难题:3