1.单选题- (共6题)
6.
“三等分角”大约是在公元前五世纪由古希腊人提出来的.借助如图所示的“三等分角仪”能三等分任一角.这个三等分角仪由两根有槽的棒
,
组成,两根棒在
点相连并可绕
转动,
点固定,
,点
,
可在槽中滑动,若
,则
的度数是( )












A.60° | B.65° | C.75° | D.80° |
2.填空题- (共4题)
3.解答题- (共5题)
11.
某宾馆有若干间标准房,当标准房的价格为200元时,每天入住的房间数为60间,经市场调查表明,该宾馆每间标准房的价格在170~240元之间(含170元,240元)浮动时,每天入住的房间数
(间)与每间标准房的价格
(元)的数据如下表:

(1)根据所给数据在坐标系中描出相应的点,并画出图象.
(2)求
关于
的函数表达式、并写出自变量
的取值范围.
(3)设客房的日营业额为
(元).若不考虑其他因素,问宾馆标准房的价格定为多少元时.客房的日营业额最大?最大为多少元?


![]() | … | 190 | 200 | 210 | 220 | … |
![]() | … | 65 | 60 | 55 | 50 | … |

(1)根据所给数据在坐标系中描出相应的点,并画出图象.
(2)求



(3)设客房的日营业额为

12.
定义:在平面直角坐标系中,对于任意两点
,
,若点
满足
,
,那么称点
是点
,
的融合点.
例如:
,
,当点
满是
,
时,则点
是点
,
的融合点,

(1)已知点
,
,
,请说明其中一个点是另外两个点的融合点.
(2)如图,点
,点
是直线
上任意一点,点
是点
,
的融合点.
①试确定
与
的关系式.
②若直线
交
轴于点
,当
为直角三角形时,求点
的坐标.








例如:









(1)已知点



(2)如图,点






①试确定


②若直线





13.
某校为积极响应“南孔圣地,衢州有礼”城市品牌建设,在每周五下午第三节课开展了丰富多彩的走班选课活动.其中综合实践类共开设了“礼行”“礼知”“礼思”“礼艺”“礼源”等五门课程,要求全校学生必须参与其中一门课程.为了解学生参与综合实践类课程活动情况,随机抽取了部分学生进行调查,根据调查结果绘制了如图所示不完整的条形统计图和扇形统计图.

(1)请问被随机抽取的学生共有多少名?并补全条形统计图.
(2)在扇形统计图中,求选择“礼行”课程的学生人数所对应的扇形圆心角的度数.
(3)若该校共有学生1200人,估计其中参与“礼源”课程的学生共有多少人?

(1)请问被随机抽取的学生共有多少名?并补全条形统计图.
(2)在扇形统计图中,求选择“礼行”课程的学生人数所对应的扇形圆心角的度数.
(3)若该校共有学生1200人,估计其中参与“礼源”课程的学生共有多少人?
试卷分析
-
【1】题量占比
单选题:(6道)
填空题:(4道)
解答题:(5道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:1
5星难题:0
6星难题:10
7星难题:0
8星难题:0
9星难题:4