1.单选题- (共7题)
5.
二次函数y=ax2+bx+c的图象如图所示,以下结论:①abc>0;②4ac<b2;③2a+b>0;④其顶点坐标为(
,﹣2);⑤当x<
时,y随x的增大而减小;⑥a+b+c>0;⑦方程ax2+bx+c=﹣4有实数解,正确的有( )




A.3个 | B.4个 | C.5个 | D.6个 |
2.填空题- (共4题)
3.解答题- (共5题)
13.
已知关于x的一元二次方程:x2﹣2(m+1)x+m2+5=0有两个不相等的实数根.
(1)求m的取值范围;
(2)若原方程的两个实数根为x1、x2,且满足x12+x22=|x1|+|x2|+2x1x2,求m的值.
(1)求m的取值范围;
(2)若原方程的两个实数根为x1、x2,且满足x12+x22=|x1|+|x2|+2x1x2,求m的值.
14.
如图,已知:二次函数y=x2+bx+c的图象与x轴交于A,B两点,其中A点坐标为(﹣3,0),与y轴交于点C,点D(﹣2,﹣3)在抛物线上.
(1)求抛物线的表达式;
(2)抛物线的对称轴上有一动点P,求出PA+PD的最小值;
(3)若抛物线上有一动点M,使△ABM的面积等于△ABC的面积,求M点坐标.
(4)抛物线的对称轴上是否存在动点Q,使得△BCQ为等腰三角形?若存在,求出点Q的坐标;若不存在,说明理由.
(1)求抛物线的表达式;
(2)抛物线的对称轴上有一动点P,求出PA+PD的最小值;
(3)若抛物线上有一动点M,使△ABM的面积等于△ABC的面积,求M点坐标.
(4)抛物线的对称轴上是否存在动点Q,使得△BCQ为等腰三角形?若存在,求出点Q的坐标;若不存在,说明理由.

15.
如图,半径为5的⊙P与y轴交于点M(0,﹣4),N(0,﹣10)
(1)求点P的坐标;
(2)将⊙P绕点O顺时针方向旋转90°后得⊙A,交x轴于B、C,求过A、B、C三个点的抛物线的解析式.
(1)求点P的坐标;
(2)将⊙P绕点O顺时针方向旋转90°后得⊙A,交x轴于B、C,求过A、B、C三个点的抛物线的解析式.

试卷分析
-
【1】题量占比
单选题:(7道)
填空题:(4道)
解答题:(5道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:1
5星难题:0
6星难题:10
7星难题:0
8星难题:2
9星难题:3