1.选择题- (共1题)
2.单选题- (共5题)
4.
下列结论正确的个数有( )
①有两边和一角对应相等的两个三角形全等;
②三角形三边的垂直平分线相交于一点;
③有两边对应相等的两个直角三角形全等;
④直线不是轴对称图形.
①有两边和一角对应相等的两个三角形全等;
②三角形三边的垂直平分线相交于一点;
③有两边对应相等的两个直角三角形全等;
④直线不是轴对称图形.
A.0个 | B.1 个 | C.2个 | D.3个 |
3.填空题- (共4题)
4.解答题- (共5题)
12.
阅读理解:“分割、拼凑法”是几何证明中常用的方法。苏科版八上数学第一章《全等三角形》中,有以下两道题,其中问题1中的图1分割成两个全等三角形,而问题2是“HL定理”的证明,却将图2两个直角三角形拼成了一个等腰三角形图3.
请按照上面的思路,补全问题1、2的解答:
问题1:已知:如图1,在△ABC中,AB=AC.求证:∠B=∠C.
问题2:如图2,在△ABC和△A1B1C1中,∠C=∠C1=90°,AB=A1B1,AC=A1C1.
求证:△ABC≌△A1B1C1(补全证明过程) .
证明:把两个直角三角形如图3所示拼在一起.
仿照上面的方法解答问题:
问题3:如图4,△ABC中,∠ACB=90°,四边形CDEF是正方形,AE=5,BE=3.
求阴影部分的面积和.

请按照上面的思路,补全问题1、2的解答:
问题1:已知:如图1,在△ABC中,AB=AC.求证:∠B=∠C.
问题2:如图2,在△ABC和△A1B1C1中,∠C=∠C1=90°,AB=A1B1,AC=A1C1.
求证:△ABC≌△A1B1C1(补全证明过程) .
证明:把两个直角三角形如图3所示拼在一起.
仿照上面的方法解答问题:
问题3:如图4,△ABC中,∠ACB=90°,四边形CDEF是正方形,AE=5,BE=3.
求阴影部分的面积和.

14.
操作题:
(1)已知:∠AOB,点M、N.
求作:①∠AOB的平分线OC;
②点P,在OC上,且PM=PN.(用尺规作图,保留作图痕迹,不写作法)

(2)如图,在3×3网格中,已知线段AB、CD,以格点为端点画一条线段,使它与AB、CD组成轴对称图形.(画出所有可能)
(1)已知:∠AOB,点M、N.
求作:①∠AOB的平分线OC;
②点P,在OC上,且PM=PN.(用尺规作图,保留作图痕迹,不写作法)

(2)如图,在3×3网格中,已知线段AB、CD,以格点为端点画一条线段,使它与AB、CD组成轴对称图形.(画出所有可能)

试卷分析
-
【1】题量占比
选择题:(1道)
单选题:(5道)
填空题:(4道)
解答题:(5道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:0
5星难题:0
6星难题:3
7星难题:0
8星难题:0
9星难题:11