1.单选题- (共10题)
2.
如图所示,AB、CD相交于点O,△AOC≌△BOD,点E、F分别在OA、OB上,要使△EOC≌△FOD,添加的一个条件不可能是( )


A.∠OCE=∠ODF | B.∠CEA=∠DFB | C.CE=DF | D.OE=OF |
3.
如图所示,点A、B分别是∠NOP、∠MOP平分线上的点,AB⊥OP于点E,BC⊥MN于点C,AD⊥MN于点D,下列结论错误的是( )


A.AD+BC=AB | B.与∠CBO互余的角有两个 |
C.∠AOB=90° | D.点O是CD的中点 |
4.
如图,AD是△ABC的中线,E,F分别是AD和AD延长线上的点,且DE=DF,连接BF,CE、下列说法:①CE=BF;②△ABD和△ACD面积相等;③BF∥CE;④△BDF≌△CDE.其中正确的有( )


A.1个 | B.2个 | C.3个 | D.4个 |
7.
如图,已知△ABC与△CDE均是等边三角形,点B、C、E在同一条直线上,AE与BD交于点O,AE与CD交于点G,AC与BD交于点F,连接OC、FG,则下列结论:①AE=BD;②AG=BF;③FG∥BE;④∠BOC=∠EOC.其中正确结论的个数为


A.1 | B.2 | C.3 | D.4 |
9.
如图,AD是△ABC的中线,E,F分别是AD和AD延长线上的点,且DE=DF,连结BF,CE,下列说法①△BDF≌△CDE;②△ABD和△ACD面积相等;③BF∥CE;④CE=BF,其中正确的有( )


A.1个 | B.2个 | C.3个 | D.4个 |
10.
下列说法中:①如果两个三角形可以依据“AAS”来判定全等,那么一定也可以依据“ASA”来判定它们全等;②如果两个三角形都和第三个三角形不全等,那么这两个三角形也一定不全等;③要判断两个三角形全等,给出的条件中至少要有一对边对应相等.正确的是( )
A.①和② | B.②和③ | C.①和③ | D.①②③ |
2.选择题- (共3题)
3.填空题- (共7题)
14.
王师傅常用角尺平分一个角,如图所示,学生小明可用三角尺平分一个角,他们在∠AOB两边上分别取OM、ON,使OM=ON,前者使角尺两边相同刻度分别与M、N重合,角尺顶点为P;后者分别过M、N作OA、OB的垂线,交点为P,则均可得到△OMP≌△ONP,其依据分别是____________.

15.
如图所示,△ABC为等边三角形,AQ=PQ,PR⊥AB于点R,PS⊥AC于点S,PR=PS,有下列四个结论:①点P在∠BAC的平分线上;②AS=AR;③QP∥AB;④△BRP≌△CSP.其中,正确的有__________(填序号即可).

20.
如图,点B、C在∠SAT的两边上,且AB=AC.

(1)请按下列语句用尺规画出图形.(不写画法,保留作图痕迹)
①AN⊥BC,垂足为N;
②∠SBC的平分线交AN延长线于点M;
③连接CM.
(2)该图中有_______对全等三角形.

(1)请按下列语句用尺规画出图形.(不写画法,保留作图痕迹)
①AN⊥BC,垂足为N;
②∠SBC的平分线交AN延长线于点M;
③连接CM.
(2)该图中有_______对全等三角形.
4.解答题- (共5题)
25.
(1)如图(1),已知:在△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥直线m, CE⊥直线m,垂足分别为点D、E.证明:DE=BD+CE.
(2)如图(2),将(1)中的条件改为:在△ABC中,AB=AC,D、A、E三点都在直线m上,并且有∠BDA=∠AEC=∠BAC=
,其中
为任意锐角或钝角.请问结论DE=BD+CE是否成立?如成立,请你给出证明;若不成立,请说明理由.
(3)拓展与应用:如图(3),D、E是D、A、E三点所在直线m上的两动点(D、A、E三点互不重合),点F为∠BAC平分线上的一点,且△ABF和△ACF均为等边三角形,连接BD、CE,若∠BDA=∠AEC=∠BAC,试判断△DEF的形状.
(2)如图(2),将(1)中的条件改为:在△ABC中,AB=AC,D、A、E三点都在直线m上,并且有∠BDA=∠AEC=∠BAC=


(3)拓展与应用:如图(3),D、E是D、A、E三点所在直线m上的两动点(D、A、E三点互不重合),点F为∠BAC平分线上的一点,且△ABF和△ACF均为等边三角形,连接BD、CE,若∠BDA=∠AEC=∠BAC,试判断△DEF的形状.

试卷分析
-
【1】题量占比
单选题:(10道)
选择题:(3道)
填空题:(7道)
解答题:(5道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:2
5星难题:0
6星难题:12
7星难题:0
8星难题:1
9星难题:7