1.单选题- (共7题)
3.
第二届“一带一路”国际合作高峰论坛于2019年4月25日至27日在北京召开,“一带一路”建设进行5年多来,中资金融机构为“一带一路”相关国家累计发放贷款250000000000元,重点支持了基础设施、社会民生等项目.数字250000000000用科学记数法表示,正确的是( )
A.![]() | B.![]() | C.![]() | D.![]() |
7.
下列命题是假命题的是( )
A.函数![]() ![]() |
B.抛物线![]() |
C.对角线互相垂直且相等的四边形是正方形 |
D.垂直于弦的直径平分这条弦 |
2.填空题- (共5题)
3.解答题- (共7题)
15.
为了节能减排,我市某校准备购买某种品牌的节能灯,已知3只A型节能灯和5只B型节能灯共需50元,2只A型节能灯和3只B型节能灯共需31元.
(1)求1只A型节能灯和1只B型节能灯的售价各是多少元?
(2)学校准备购买这两种型号的节能灯共200只,要求A型节能灯的数量不超过B型节能灯的数量的3倍,请设计出最省钱的购买方案,并说明理由.
(1)求1只A型节能灯和1只B型节能灯的售价各是多少元?
(2)学校准备购买这两种型号的节能灯共200只,要求A型节能灯的数量不超过B型节能灯的数量的3倍,请设计出最省钱的购买方案,并说明理由.
16.
如图,抛物线
与x轴交于A、B两点(A在B的左侧),与y轴交于点N,过A点的直线l:
与y轴交于点C,与抛物线
的另一个交点为D,已知
,P点为抛物线
上一动点(不与A、D重合).

(1)求抛物线和直线l的解析式;
(2)当点P在直线l上方的抛物线上时,过P点作PE∥x轴交直线l于点E,作
轴交直线l于点F,求
的最大值;
(3)设M为直线l上的点,探究是否存在点M,使得以点N、C,M、P为顶点的四边形为平行四边形?若存在,求出点M的坐标;若不存在,请说明理由.






(1)求抛物线和直线l的解析式;
(2)当点P在直线l上方的抛物线上时,过P点作PE∥x轴交直线l于点E,作


(3)设M为直线l上的点,探究是否存在点M,使得以点N、C,M、P为顶点的四边形为平行四边形?若存在,求出点M的坐标;若不存在,请说明理由.
试卷分析
-
【1】题量占比
单选题:(7道)
填空题:(5道)
解答题:(7道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:9
5星难题:0
6星难题:6
7星难题:0
8星难题:2
9星难题:1