1.单选题- (共5题)
2.选择题- (共3题)
6.设m,n是不同的直线,α、β、γ是三个不同的平面,有以下四个命题:
①若m⊥α,n⊥α,则m∥n;
②若α∩γ=m,β∩γ=n,m∥n则α∥β;
③若α∥β,β∥γ,m⊥α,则m⊥γ
④若γ⊥α,γ⊥β,则α∥β.
其中正确命题的序号是( )
7.设m,n是不同的直线,α、β、γ是三个不同的平面,有以下四个命题:
①若m⊥α,n⊥α,则m∥n;
②若α∩γ=m,β∩γ=n,m∥n则α∥β;
③若α∥β,β∥γ,m⊥α,则m⊥γ
④若γ⊥α,γ⊥β,则α∥β.
其中正确命题的序号是( )
3.填空题- (共4题)
10.
随着某市养老机构建设稳步推进,拥有的养老床位不断增加,养老床位数从2014年底的2万个增长到2016年底的2.88万个,则该市这两年拥有的养老床位数的平均年增长率为_____________;
4.解答题- (共6题)
14.
某加工厂以每吨3000元的价格购进50吨原料进行加工.若进行粗加工,每吨加工费用为600元,需
天,每吨售价4000元;若进行精加工,每吨加工费用为900元,需
天,每吨售价4500元.现将这50吨原料全部加工完.设其中粗加工x吨,获利y元.
(1)请完成表格并求出y与x的函数关系式(不要求写自变量的范围);

(2)如果必须在20天内完成,如何安排生产才能获得最大利润,最大利润是多少?


(1)请完成表格并求出y与x的函数关系式(不要求写自变量的范围);

(2)如果必须在20天内完成,如何安排生产才能获得最大利润,最大利润是多少?
15.
如图,把矩形纸片ABCD置于直角坐标系中,AB∥x轴,BC∥y轴,AB=4,BC=3,点B(5,1)翻折矩形纸片使点A落在对角线DB上的H处得折痕DG.
(1)求AG的长;
(2)在坐标平面内存在点M(m,-1)使AM+CM最小,求出这个最小值;
(3)求线段GH所在直线的解析式.
(1)求AG的长;
(2)在坐标平面内存在点M(m,-1)使AM+CM最小,求出这个最小值;
(3)求线段GH所在直线的解析式.

16.
已知直线y=2x﹣5与x轴和y轴分别交于点A和点B,抛物线y=﹣x2+bx+c的顶点M在直线AB上,且抛物线与直线AB的另一个交点为N.
(1)如图,当点M与点A重合时,求抛物线的解析式;
(2)在(1)的条件下,求点N的坐标和线段MN的长;
(3)抛物线y=﹣x2+bx+c在直线AB上平移,是否存在点M,使得△OMN与△AOB相似?若存在,直接写出点M的坐标;若不存在,请说明理由.
(1)如图,当点M与点A重合时,求抛物线的解析式;
(2)在(1)的条件下,求点N的坐标和线段MN的长;
(3)抛物线y=﹣x2+bx+c在直线AB上平移,是否存在点M,使得△OMN与△AOB相似?若存在,直接写出点M的坐标;若不存在,请说明理由.

17.
从⊙O外一点A引⊙O的切线AB,切点为B,连接AO并延长交⊙O于点C,点D.连接BC.
(1)如图1,若∠A=26°,求∠C的度数;
(2)如图2,若AE平分∠BAC,交BC于点E.求∠AEB的度数.
(1)如图1,若∠A=26°,求∠C的度数;
(2)如图2,若AE平分∠BAC,交BC于点E.求∠AEB的度数.

试卷分析
-
【1】题量占比
单选题:(5道)
选择题:(3道)
填空题:(4道)
解答题:(6道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:2
5星难题:0
6星难题:7
7星难题:0
8星难题:1
9星难题:5