1.选择题- (共10题)
4.
— What do you think of A Bite of China on CCTV?
— It's one of _______ best programs that I've ever seen.
2.单选题- (共4题)
11.
如图,A(-1,m)与B(2,m+
)是反比例函数y=
图像上的两个点,点C(-1,0),在此函数图像上找一点D,使得以A,B,C,D为顶点的四边形为梯形。满足条件的点D共有()




A.4个 | B.5个 | C.3个 | D.6个 |
3.填空题- (共3题)
4.解答题- (共5题)
20.
如图,已知Rt△ABC,AB=AC,∠ABC的平分线BD交AC于点D,BD的垂直平分线分别交AB,BC于点E、F,CD=CG。
(1)请以图中的点为顶点(不增加其他的点)分别构造两个菱形和两个等腰梯形。那么,构成菱形的四个顶点是__________或__________;构成等腰梯形的四个顶点是_____________或_____________.
(2)请你选择其中一个图形加以证明。
(1)请以图中的点为顶点(不增加其他的点)分别构造两个菱形和两个等腰梯形。那么,构成菱形的四个顶点是__________或__________;构成等腰梯形的四个顶点是_____________或_____________.
(2)请你选择其中一个图形加以证明。

21.
某中学为了培养学生的社会实践能力,今年“五一”长假期间要求学生参加一项社会调查活动.为此,小明在他所居住小区的600个家庭中,随机调查了50个家庭在新工资制度实施后的收入情况,并绘制了如下的频数分布表和频数分布直方图(收入取整数,单位:元).

请你根据以上提供的信息,解答下列问题:
(1)补全频数分布表和频数分布直方图;
(2)这50个家庭收入的中位数落在 小组;
(3)请你估算该小区600个家庭中收入较低(不足1400元)的家庭个数大约有多少?

请你根据以上提供的信息,解答下列问题:
(1)补全频数分布表和频数分布直方图;
(2)这50个家庭收入的中位数落在 小组;
(3)请你估算该小区600个家庭中收入较低(不足1400元)的家庭个数大约有多少?
22.
如图1,在等腰梯形ABCO中,AB∥CO,E是AO的中点,过点E作EF∥OC交BC于F,AO=4,OC=6,∠AOC=60°.现把梯形ABCO放置在平面直角坐标系中,使点O与原点重合,OC在x轴正半轴上,点A,B在第一象限内.
(1)求点E的坐标及线段AB的长;
(2)点P为线段EF上的一个动点,过点P作PM⊥EF交OC于点M,过M作MN∥AO交折线ABC于点N,连结PN,设PE=x.△PMN的面积为S.
①求S关于x的函数关系式;
②△PMN的面积是否存在最大值,若不存在,请说明理由.若存在,求出面积的最大值;

(3)另有一直角梯形EDGH(H在EF上,DG落在OC上,∠EDG=90°,且DG=3,HG∥BC.现在开始操作:固定等腰梯形ABCO,将直角梯形EDGH以每秒1个单位的速度沿OC方向向右移动,直到点D与点C重合时停止(如图2).设运动时间为t秒,运动后的直角梯形为E′D′G′H′(如图3);试探究:在运动过程中,等腰梯ABCO与直角梯形E′D′G′H′重合部分的面积y与时间t的函数关系式.
(1)求点E的坐标及线段AB的长;
(2)点P为线段EF上的一个动点,过点P作PM⊥EF交OC于点M,过M作MN∥AO交折线ABC于点N,连结PN,设PE=x.△PMN的面积为S.
①求S关于x的函数关系式;
②△PMN的面积是否存在最大值,若不存在,请说明理由.若存在,求出面积的最大值;

(3)另有一直角梯形EDGH(H在EF上,DG落在OC上,∠EDG=90°,且DG=3,HG∥BC.现在开始操作:固定等腰梯形ABCO,将直角梯形EDGH以每秒1个单位的速度沿OC方向向右移动,直到点D与点C重合时停止(如图2).设运动时间为t秒,运动后的直角梯形为E′D′G′H′(如图3);试探究:在运动过程中,等腰梯ABCO与直角梯形E′D′G′H′重合部分的面积y与时间t的函数关系式.
试卷分析
-
【1】题量占比
选择题:(10道)
单选题:(4道)
填空题:(3道)
解答题:(5道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:1
5星难题:0
6星难题:5
7星难题:0
8星难题:0
9星难题:6