重庆市2019年中考数学试题(B卷)

适用年级:初三
试卷号:63384

试卷类型:中考真题
试卷考试时间:2019/8/1

1.单选题(共10题)

1.
5的绝对值是(   )
A.5B.﹣5C.D.
2.
估计的值应在(   )
A.5和6之间B.6和7之间C.7和8之间D.8和9之间
3.
某次知识竞赛共有20题,答对一题得10分,答错或不答扣5分,小华得分要超过120分,他至少要答对的题的个数为(   )
A.13B.14C.15D.16
4.
若数a使关于x的不等式组有且仅有三个整数解,且使关于y的分式方程的解为正数,则所有满足条件的整数a的值之和是(   )
A.﹣3B.﹣2C.﹣1D.1
5.
抛物线的对称轴是(   )
A.直线B.直线C.直线D.直线
6.
根据如图所示的程序计算函数y的值,若输入x的值是7,则输出y的值是﹣2,若输入x的值是﹣8,则输出y的值是(   )
A.5B.10C.19D.21
7.
如图,在平面直角坐标系中,菱形OABC的边OAx轴上,点.若反比例函数经过点C,则k的值等于(   )
A.10B.24C.48D.50
8.
如图,在中,于点D于点E.连接DE,将沿直线AE翻折至所在的平面内,得,连接DF.过点DBE于点G.则四边形DFEG的周长为(   )
A.8B.C.D.
9.
如图,AB是⊙O的直径,AC是⊙O的切线,A为切点,若,则的度数为(   )
A.B.C.D.
10.
如图是一个由5个相同正方体组成的立体图形,它的主视图是(   )
A.B.
C.D.

2.填空题(共3题)

11.
计算:________.
12.
某磨具厂共有六个生产车间,第一、二、三、四车间毎天生产相同数量的产品,第五、六车间每天生产的产品数量分別是第一车间每天生产的产品数量的.甲、乙两组检验员进驻该厂进行产品检验,在同时开始检验产品时,每个车间原有成品一样多,检验期间各车间继续生产.甲组用了6天时间将第一、二、三车间所有成品同时检验完;乙组先用2天将第四、五车间的所有成品同时检验完后,再用了4天检验完第六车间的所有成品(所有成品指原有的和检验期间生产的成品).如果每个检验员的检验速度一样,则甲、乙两组检验员的人数之比是________.
13.
一天,小明从家出发匀速步行去学校上学.几分钟后,在家休假的爸爸发现小明忘带数学书,于是爸爸立即匀速跑步去追小明,爸爸追上小明后以原速原路跑回家.小明拿到书后以原速的快步赶往学校,并在从家出发后23分钟到校(小明被爸爸追上时交流时间忽略不计).两人之间相距的路程y(米)与小明从家出发到学校的步行时间x(分钟)之间的函数关系如图所示,则小明家到学校的路程为________米.

3.解答题(共7题)

14.
计算:
(1)
(2)
15.
在数的学习过程中,我们总会对其中一些具有某种特性的数进行研究,如学习自然数时,我们研究了偶数、奇数、合数、质数等.现在我们来研究一种特殊的自然数﹣“纯数”.
定义:对于自然数n,在通过列竖式进行的运算时各位都不产生进位现象,则称这个自然数n为“纯数”.
例如:32是“纯数”,因为在列竖式计算时各位都不产生进位现象;23不是“纯数”,因为在列竖式计算时个位产生了进位.
(1)请直接写出1949到2019之间的“纯数”;
(2)求出不大于100的“纯数”的个数,并说明理由.
16.
某菜市场有2.5平方米和4平方米两种摊位,2.5平方米的摊位数是4平方米摊位数的2倍.管理单位每月底按每平方米20元收取当月管理费,该菜市场全部摊位都有商户经营且各摊位均按时全额缴纳管理费.
(1)菜市场毎月可收取管理费4500元,求该菜市场共有多少个4平方米的摊位?
(2)为推进环保袋的使用,管理单位在5月份推出活动一:“使用环保袋送礼物”,2.5平方米和4平方米两种摊位的商户分别有40%和20%参加了此项活动.为提高大家使用环保袋的积极性,6月份准备把活动一升级为活动二:“使用环保袋抵扣管理费”,同时终止活动一.经调査与测算,参加活动一的商户会全部参加活动二,参加活动二的商户会显著增加,这样,6月份参加活动二的2.5平方米摊位的总个数将在5月份参加活动一的同面积个数的基础上增加2a%,毎个摊位的管理费将会减少;6月份参加活动二的4平方米摊位的总个数将在5月份参加活动一的同面积个数的基础上增加6a%,每个摊位的管理费将会减少.这样,参加活动二的这部分商户6月份总共缴纳的管理费比他们按原方式共缴纳的管理费将减少,求a的值.
17.
函数图象在探索函数的性质中有非常重要的作用,下面我们就一类特殊的函数展开探索.画函数的图象,经历分析解析式、列表、描点、连线过程得到函数图象如图所示;经历同样的过程画函数的图象如图所示.
x

﹣3
﹣2
﹣1
0
1
2
3

y

﹣6
﹣4
﹣2
0
﹣2
﹣4
﹣6

 

(1)观察发现:三个函数的图象都是由两条射线组成的轴对称图形;三个函数解折式中绝对值前面的系数相同,则图象的开口方向和形状完全相同,只有最高点和对称轴发生了变化.写出点AB的坐标和函数的对称轴.
(2)探索思考:平移函数的图象可以得到函数的图象,分别写出平移的方向和距离.
(3)拓展应用:在所给的平面直角坐标系内画出函数的图象.若点在该函数图象上,且,比较的大小.
18.
如图,在中,于点D
(1)若,求的度数;
(2)若点E在边AB上,AD的延长线于点F.求证:
19.
中,BE平分AD于点E

(1)如图1,若,求的面积;
(2)如图2,过点A,交DC的延长线于点F,分别交BEBC于点GH,且.求证:
20.
为落实视力保护工作,某校组织七年级学生开展了视力保健活动.活动前随机测查了30名学生的视力,活动后再次测查这部分学生的视力.两次相关数据记录如下:
活动前被测查学生视力数据:
(1)4.0 4.1 4.1 4.2 4.2 4.3 4.3 4.4 4.4 4.4 4.5 4.5 4.6 4.6 4.6
(2)4.7 4.7 4.7 4.7 4.8 4.8 4.8 4.8 4.8 4.9 4.9 4.9 5.0 5.0 5.1
活动后被测查学生视力数据:
(2)4.0 4.2 4.3 4.4 4.4 4.5 4.5 4.6 4.6 4.6 4.7 4.7 4.7 4.7 4.8
(3)4.8 4.8 4.8 4.8 4.8 4.8 4.9 4.9 4.9 4.9 4.9 5.0 5.0 5.1 5.1
活动后被测查学生视力频数分布表
分组
频数

1

2

b

7

12

4
 
根据以上信息回答下列问题:
(1)填空:______ ______,活动前被测查学生视力样本数据的中位数是______,活动后被测查学生视力样本数据的众数是______
(2)若视力在4.8及以上为达标,估计七年级600名学生活动后视力达标的人数有多少?
(3)分析活动前后相关数据,从一个方面评价学校开展视力保健活动的效果.
试卷分析
  • 【1】题量占比

    单选题:(10道)

    填空题:(3道)

    解答题:(7道)

  • 【2】:难度分析

    1星难题:0

    2星难题:0

    3星难题:0

    4星难题:2

    5星难题:0

    6星难题:15

    7星难题:0

    8星难题:1

    9星难题:2