1.单选题- (共16题)
7.
对于实数x,我们规定[x]表示不大于x的最大整数,例如[1.2]=1,[3]=3,[-2.5]=-3,若[1-
]=5,则x的取值范围是( )

A.-7<x≤-5 | B.-7≤x<-5 | C.-9≤x<-7 | D.-9<x≤-7 |
12.
如图,△ABC是一把直角三角尺,∠ACB=90°,∠B=30°.把三角尺的直角顶点放在一把直尺的一边上,AC与直尺的另一边交于点D,AB与直尺的两条边分别交于点E,F.若∠AFD=58°,则∠BCE的度数为()


A.20° | B.28° | C.32° | D.88° |
2.填空题- (共3题)
3.解答题- (共7题)
21.
观察下列各式.
①4×1×2+1=(1+2)2;②4×2×3+1=(2+3)2;③4×3×4+1=(3+4)2…
(1)根据你观察、归纳,发现的规律,写出4×2016×2017+1可以是哪个数的平方?
(2)试猜想第n个等式,并通过计算验证它是否成立.
(3)利用前面的规律,将4(
x2+x)(
x2+x+1)+1因式分解.
①4×1×2+1=(1+2)2;②4×2×3+1=(2+3)2;③4×3×4+1=(3+4)2…
(1)根据你观察、归纳,发现的规律,写出4×2016×2017+1可以是哪个数的平方?
(2)试猜想第n个等式,并通过计算验证它是否成立.
(3)利用前面的规律,将4(


22.
如图,一长方形模具长为2a,宽为a,中间开出两个边长为b的正方形孔.
(1)求图中阴影部分面积(用含a、b的式子表示)
(2)用分解因式计算当a=15.7,b=4.3时,阴影部分的面积.
(1)求图中阴影部分面积(用含a、b的式子表示)
(2)用分解因式计算当a=15.7,b=4.3时,阴影部分的面积.

23.
如图,在第1个△ABA1中,∠B=40°,∠BAA1=∠BA1A,在A1B上取一点C,延长AA1到A2,使得在第2个△A1CA2中,∠A1CA2=∠A1A2C;在A2C上取一点D,延长A1A2到A3,使得在第3个△A2DA3中,∠A2DA3=∠A2A3D;…,按此做法进行下去,第3个三角形中以A3为顶点的内角的度数为 ;第n个三角形中以An为顶点的内角的度数为 .

24.
某大学公益组织计划购买
两种的文具套装进行捐赠,关注留守儿童经洽谈,购买
套装比购买
套装多用20元,且购买5套
套装和4套
套装共需820元.
(1)求购买一套
套装文具、一套
套装各需要多少元?
(2)根据该公益组织的募捐情况和捐助对象情况,需购买
两种套装共60套,要求购买
两种套装的总费用不超过5240元,则购买
套装最多多少套?





(1)求购买一套


(2)根据该公益组织的募捐情况和捐助对象情况,需购买



25.
探究与发现:
如图1所示的图形,像我们常见的学习用品--圆规.我们不妨把这种图形叫做“规形图”,那么在这一个简单的图形中,到底隐藏了哪些数学知识呢?请解决以下问题:
(1)观察“规形图”,试探究∠BPC与∠A、∠B、∠C之间的关系,并说明理由;
(2)请你直接利用以上结论,解决以下问题:
①如图2:已知△ABC,BP平分∠ABC,CP平分∠ACB,直接写出∠BPC与∠A之间存在的等量关系为: .
迁移运用:如图3:在△ABC中,∠A=80°,点O是∠ABC,∠ACB角平分线的交点,点P是∠BOC,∠OCB角平分线的交点,若∠OPC=100°,则∠ACB的度数 .
②如图4:若D点是△ABC内任意一点,BP平分∠ABD,CP平分∠AC

如图1所示的图形,像我们常见的学习用品--圆规.我们不妨把这种图形叫做“规形图”,那么在这一个简单的图形中,到底隐藏了哪些数学知识呢?请解决以下问题:
(1)观察“规形图”,试探究∠BPC与∠A、∠B、∠C之间的关系,并说明理由;
(2)请你直接利用以上结论,解决以下问题:
①如图2:已知△ABC,BP平分∠ABC,CP平分∠ACB,直接写出∠BPC与∠A之间存在的等量关系为: .
迁移运用:如图3:在△ABC中,∠A=80°,点O是∠ABC,∠ACB角平分线的交点,点P是∠BOC,∠OCB角平分线的交点,若∠OPC=100°,则∠ACB的度数 .
②如图4:若D点是△ABC内任意一点,BP平分∠ABD,CP平分∠AC
A.直接写出∠BDC、∠BPC、∠A之间存在的等量关系为 . |

试卷分析
-
【1】题量占比
单选题:(16道)
填空题:(3道)
解答题:(7道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:0
5星难题:0
6星难题:12
7星难题:0
8星难题:11
9星难题:3