1.单选题- (共10题)
4.
在集合
中任取一个偶数a和一个奇数b构成以原点为起点的向量
,从所有得到的以原点为起点的向量中任取两个向量为邻边作平行四边形,记所有作成的平行四边形的个数为n,其中面积等于2的平行四边形的个数为m,则



A.![]() | B.![]() | C.![]() | D.![]() |
5.
从装有
个白球和
个蓝球的口袋中任取
个球,那么对立的两个事件是()



A.“恰有一个白球”与“恰有两个白球” |
B.“至少有一个白球”与“至少有—个蓝球” |
C.“至少有—个白球”与“都是蓝球” |
D.“至少有一个白球”与“都是白球” |
7.
下面有三个游戏规则,袋子中分别装有球,从袋中无放回地取球,问其中不公平的游戏是( )
游戏1 | 游戏2 | 游戏3 |
3个黑球和一个白球 | 一个黑球和一个白球 | 2个黑球和2个白球 |
取1个球,再取1个球 | 取1个球 | 取1个球,再取1个球 |
取出的两个球同色→甲胜 | 取出的球是黑球→甲胜 | 取出的两个球同色→甲胜 |
取出的两个球不同色→乙胜 | 取出的球是白球→乙胜 | 取出的两个球不同色→乙胜 |
A.游戏1和游戏3 | B.游戏1 | C.游戏2 | D.游戏3 |
2.选择题- (共1题)
3.填空题- (共3题)
12.
给出下列结论:
①命题“
”的否定是“
”;
②命题“有些正方形是平行四边形”的否定是“所有正方形不都是平行四边形”;
③命题“
是对立事件”是命题“
是互斥事件”的充分不必要条件;
④若
,
是实数,则“
且
”是“
且
”的必要不充分条件.
其中正确结论的是 _________________.
①命题“


②命题“有些正方形是平行四边形”的否定是“所有正方形不都是平行四边形”;
③命题“


④若






其中正确结论的是 _________________.
4.解答题- (共4题)
17.
某农场计划种植某种新作物,为此对这种作物的两个品种(分别称为品种家和品种乙)进行田间试验.选取两大块地,每大块地分成n小块地,在总共2n小块地中,随机选n小块地种植品种甲,另外n小块地种植品种乙.
(I)假设n=2,求第一大块地都种植品种甲的概率;
(II)试验时每大块地分成8小块,即n=8,试验结束后得到品种甲和品种乙在个小块地上的每公顷产量(单位:kg/hm2)如下表:
分别求品种甲和品种乙的每公顷产量的样本平均数和样本方差;根据试验结果,你认为应该种植哪一品种?
附:样本数据
的的样本方差
,其中
为样本平均数.
某农场计划种植某种新作物,为此对这种作物的两个品种(分别称为品种家和品种乙)进行田间试验.选取两大块地,每大块地分成n小块地,在总共2n小块地中,随机选n小块地种植品种甲,另外n小块地种植品种乙.
(I)假设n=2,求第一大块地都种植品种甲的概率;
(II)试验时每大块地分成8小块,即n=8,试验结束后得到品种甲和品种乙在个小块地上的每公顷产量(单位:kg/hm2)如下表:
品种甲 | 403 | 397 | 390 | 404 | 388 | 400 | 412 | 406 |
品种乙 | 419 | 403 | 412 | 418 | 408 | 423 | 400 | 413 |
分别求品种甲和品种乙的每公顷产量的样本平均数和样本方差;根据试验结果,你认为应该种植哪一品种?
附:样本数据



试卷分析
-
【1】题量占比
单选题:(10道)
选择题:(1道)
填空题:(3道)
解答题:(4道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:0
5星难题:0
6星难题:0
7星难题:0
8星难题:0
9星难题:17