1.单选题- (共10题)
3.
二次函数y=ax2+bx+c(a≠0)的部分图象如右图所示,图象过点(-1,0),对称轴为直线x=2,系列结论:(1)4a+b=0;(2)4a+c>2b;(3)5a+3c>0;(4)若点A(-2,y1),点B(
,y2),点C(
,y3)在该函数图象上,则y1<y3<y2;其中正确的结论有( )




A.2个 | B.3个 | C.4个 | D.1个 |
5.
如图,已知直线AB、CD被直线AC所截,AB∥CD,E是平面内任意一点(点E不在直线AB、CD、AC上),设∠BAE=α,∠DCE=β.下列各式:①α+β,②α﹣β,③β﹣α,④360°﹣α﹣β,∠AEC的度数可能是( )

A. ①②③ B. ①②④ C. ①③④ D. ①②③④

A. ①②③ B. ①②④ C. ①③④ D. ①②③④
9.
下列调查中,最适合采用普查方式的是( )
A.对太原市民知晓“中国梦”内涵情况的调查 |
B.对全班同学1分钟仰卧起坐成绩的调查 |
C.对2018年央视春节联欢晚会收视率的调查 |
D.对2017年全国快递包裹产生的包装垃圾数量的调查 |
2.填空题- (共3题)
11.
2015年重庆力帆足球队再次征战中国足球超级联赛,重庆球迷热情高涨,球市异常火爆,第二轮比赛主场对阵卫冕冠军广州恒大淘宝队,重庆奥体中心涌现48500多名球迷支持家乡球队,将48500用科学记数法表示为_____.
3.解答题- (共6题)
15.
某工厂接受了20天内生产1200台GH型电子产品的总任务.已知每台GH型产品由4个G型装置和3个H型装置配套组成.工厂现有80名工人,每个工人每天能加工6个G型装置或3个H型装置.工厂将所有工人分成两组同时开始加工,每组分别加工一种装置,并要求每天加工的G、H型装置数量正好全部配套组成GH型产品.
(1)按照这样的生产方式,工厂每天能配套组成多少套GH型电子产品?请列出二元一次方程组解答此问题.
(2)为了在规定期限内完成总任务,工厂决定补充一些新工人,这些新工人只能独立进行G型装置的加工,且每人每天只能加工4个G型装置.1.设原来每天安排x名工人生产G型装置,后来补充m名新工人,求x的值(用含m的代数式表示)2.请问至少需要补充多少名新工人才能在规定期内完成总任务?
(1)按照这样的生产方式,工厂每天能配套组成多少套GH型电子产品?请列出二元一次方程组解答此问题.
(2)为了在规定期限内完成总任务,工厂决定补充一些新工人,这些新工人只能独立进行G型装置的加工,且每人每天只能加工4个G型装置.1.设原来每天安排x名工人生产G型装置,后来补充m名新工人,求x的值(用含m的代数式表示)2.请问至少需要补充多少名新工人才能在规定期内完成总任务?
16.
抛物线y=ax2+bx+3(a≠0)经过点A(﹣1,0),B(
,0),且与y轴相交于点C.
(1)求这条抛物线的表达式;
(2)求∠ACB的度数;
(3)设点D是所求抛物线第一象限上一点,且在对称轴的右侧,点E在线段AC上,且DE⊥AC,当△DCE与△AOC相似时,求点D的坐标.

(1)求这条抛物线的表达式;
(2)求∠ACB的度数;
(3)设点D是所求抛物线第一象限上一点,且在对称轴的右侧,点E在线段AC上,且DE⊥AC,当△DCE与△AOC相似时,求点D的坐标.

17.
一种实验用轨道弹珠,在轨道上行驶5分钟后离开轨道,前2分钟其速度v(米/分)与时间t(分)满足二次函数v=at2,后三分钟其速度v(米/分)与时间t(分)满足反比例函数关系,如图,轨道旁边的测速仪测得弹珠1分钟末的速度为2米/分,求:
(1)二次函数和反比例函数的关系式.
(2)弹珠在轨道上行驶的最大速度.
(1)二次函数和反比例函数的关系式.
(2)弹珠在轨道上行驶的最大速度.

18.
如图,在平面直角坐标系xOy中,一次函数y=kx+b的图象与反比例函数y=
的图象相交于点A(m,3)、B(–6,n),与x轴交于点C.
(1)求一次函数y=kx+b的关系式;
(2)结合图象,直接写出满足kx+b>
的x的取值范围;
(3)若点P在x轴上,且S△ACP=
,求点P的坐标.

(1)求一次函数y=kx+b的关系式;
(2)结合图象,直接写出满足kx+b>

(3)若点P在x轴上,且S△ACP=


试卷分析
-
【1】题量占比
单选题:(10道)
填空题:(3道)
解答题:(6道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:3
5星难题:0
6星难题:6
7星难题:0
8星难题:5
9星难题:5