广东省广州市第二中学2017-2018学年高二上学期期中考试试数学(文)试题

适用年级:高二
试卷号:629367

试卷类型:期中
试卷考试时间:2018/2/3

1.单选题(共11题)

1.
已知集合,则
A.B.C.D.
2.
已知函数,则“”是“为偶函数”的(    ).
A.充分不必要条件B.必要不充分条件
C.必要条件D.既不充分也不必要条件
3.
已知函数,若,则的取值范围是()
A.B.C.D.
4.
已知的面积为,则(    ).
A.B.C.D.
5.
已知向量,则向量的夹角为(    ).
A.B.C.D.
6.
如图,已知四棱锥的度面为矩形,平面平面,则四棱锥的外接球的表面积为(    ).
A.B.C.D.
7.
设椭圆C:的左、右焦点分别为,P是C上的点,
=,则C的离心率为()
A.B.C.D.
8.
某单位为了了解办公楼用电量(度)与气温(℃)之间的关系,随机统计了四个工作日的用电量与当天平均气温,并制作了对照表:
气温(℃)




用电量(度)




 
由表中数据得到线性回归方程,当气温为℃时,预测用电量约为(    ).
A.B.C.D.
9.
若某市所中学参加中学生合唱比赛的得分用茎叶图表示(如图),其中茎为十位数,叶为个位数,则这组数据的中位数是()
A.91B.91.5
C.92D.92.5
10.
已知直线与两坐标轴围成的区域为,不等式组所形成的区域为,现在区域中随机放置一点,则该点落在区域的概率是(    ).
A.B.C.D.
11.
执行如图所示的程序框图,则输出的的值是(    ).
A.B.C.D.

2.选择题(共1题)

12.

南宋时期,阿拉伯商人运载一批香料到泉州销售,应该到哪一机构办理相关手续(    )

3.填空题(共4题)

13.
已知,若的必要非充分条件,则的取值范围为__________.
14.
已知,则的最大值是__________.
15.
已知数列为等比数列,若,则__________.
16.
一支田径队有男女运动员98人,其中男运动员有56人。按男女比例用分层抽样的方法,从全体运动员中抽出一个容量为28的样本,那么应抽取女运动员人数是_______

4.解答题(共4题)

17.
(本小题满分12分)
已知函数 R是函数的一个零点.
(1)求的值,并求函数的单调递增区间;
(2)若 ,且,求的值.
18.
已知是公差不为零的等差数列,且成等比数列.
(Ⅰ)求数列的通项公式.
(Ⅱ)设,求数列的前项和
19.
为了解春季昼夜温差大小与某种子发芽多少之间的关系,现在从月份的天中随机挑选了天进行研究,且分别记录了每天昼夜温差与每天颗种子浸泡后的发芽数,得到如下表格:
日期





温差/℃





发芽数/颗





 
)从这天中任选天,记发芽的种子数分别为,求事件“均不小于”的概率.
)从这天中任选天,若选取的是日与日的两组数据,请根据这天中的另天的数据,求出关于的线性回归方程
)若由线性回归方程得到的估计数据与所选出的两组检验数据的误差均不超过颗,则认为得到的线性回归方程是可靠的,试问()中所得的线性回归方程是否可靠?
(参考公式:
20.
某市为了宣传环保知识,举办了一次“环保知识知多少”的问卷调查活动(一人答一份).现从回收的年龄在20〜60岁的问卷中随机抽取了100份, 统计结果如下面的图表所示.
年龄

分组

抽取份

 答对全卷的人数
答对全卷的人数占本组的概率
[20,30)
40
28
0.7
[30,40)
n
27
0.9
[40,50)
10
4
b
[50,60]
20
a
0.1
 

(1)分别求出n, a, b, c的值;
(2)从年龄在[40,60]答对全卷的人中随机抽取2人授予“环保之星”,求年龄在[50,60] 的人中至少有1人被授予“环保之星”的概率.
试卷分析
  • 【1】题量占比

    单选题:(11道)

    选择题:(1道)

    填空题:(4道)

    解答题:(4道)

  • 【2】:难度分析

    1星难题:0

    2星难题:0

    3星难题:0

    4星难题:0

    5星难题:0

    6星难题:0

    7星难题:0

    8星难题:0

    9星难题:19