安徽省亳州市2019届九年级上学期期末模拟考试数学试题

适用年级:初三
试卷号:629255

试卷类型:期末
试卷考试时间:2019/1/5

1.单选题(共7题)

1.
2018年10月24日港珠澳大桥全线通车,港珠澳大桥东起香港国际机场附近的香港口岸人工岛,向西横跨伶仃洋海域后连接珠海和澳门人工岛,止于珠海洪湾,它是世界上最长的跨海大桥,被称为“新世界七大奇迹之一”,港珠澳大桥总长度55000米,则数据55000用科学记数法表示为(  )
A.55×105B.5.5×104C.0.55×105D.5.5×105
2.
计算3+5+7+9+…+195+197+199的值是(  )
A.9699B.9999C.9899D.9799
3.
若关于x的一元二次方程kx2-6x+9=0有两个不相等的实数根,则k的取值范围(  )
A.B.C.D.
4.
已知:如图,点P是正方形ABCD的对角线AC上的一个动点(AC除外),作PEAB于点E,作PFBC于点F,设正方形ABCD的边长为x,矩形PEBF的周长为y,在下列图象中,大致表示yx之间的函数关系的是(  )

A. B.   C. D.
5.
如图,某电信公司提供了A,B两种方案的移动通讯费用y(元)与通话时间x(元)之间的关系,则下列结论中正确的有(  )
(1)若通话时间少于120分,则A方案比B方案便宜20元;
(2)若通话时间超过200分,则B方案比A方案便宜12元;
(3)若通讯费用为60元,则B方案比A方案的通话时间多;
(4)若两种方案通讯费用相差10元,则通话时间是145分或185分.
A.1个B.2个C.3个D.4个
6.
如图,直线l1∥l2,将等边三角形如图放置,若∠α=35°,则∠β等于(  )
A.35°B.30°C.25°D.15°
7.
计算(﹣a2b)3的结果是(  )
A.﹣a6b3B.a6bC.3a6b3D.﹣3a6b3

2.选择题(共1题)

8.如图,已知AB是⊙O的直径,锐角∠DAB的平分线AC交⊙O于点C,作CD⊥AD,垂足为D,直线CD与AB的延长线交于点E.

3.填空题(共3题)

9.
在数轴上与表示的点距离最近的整数点所表示的数为_____.
10.
若函数yx2+2xm的图象与x轴有且只有一个交点,则m的值为_____.
11.
在△ABC中,AB=4,BC=2,∠ABC=45°,以AB为一边作等腰直角三角形ABD,使∠ABD=90°,连接CD,则线段CD的长为_____.

4.解答题(共6题)

12.
计算:
13.
如图,已知直线y=x,点A1的坐标为(1,0),过点A1作x轴的垂线交直线于点B1,以原点O为圆心,OB1的长为半径画弧交x轴于点A2;再过点A2作x轴的垂线交直线于点B2,以原点O为圆心,OB2的长为半径画弧交x轴于点A3,…,按此做法进行下去,求点B6的坐标.
14.
设一次函数y=kx+b(k,b是常数,k≠0)的图象过A(1,3),B(﹣1,﹣1)两点.
(1)求该一次函数的表达式;
(2)若点(2a+2,a2)在该一次函数图象上,求a的值.
(3)已知点C(x1,y1)和点D(x2,y2)在该一次函数图象上,设m=(x1﹣x2)(y1﹣y2),判断反比例函数y=的图象所在的象限,说明理由.
15.
“低碳生活,绿色出行”的理念已深入人心,现在越来越多的人选择骑自行车上下班或外出旅游.周末,小红相约到郊外游玩,她从家出发0.5小时后到达甲地,玩一段时间后按原速前往乙地,刚到达乙地,接到妈妈电话,快速返回家中.小红从家出发到返回家中,行进路程y(km)随时间x(h)变化的函数图象大致如图所示.
(1)小红从甲地到乙地骑车的速度为  km/h;
(2)当1.5≤x≤2.5时,求出路程y(km)关于时间x(h)的函数解析式;并求乙地离小红家多少千米?
16.
某种电缆在空中架设时,两端挂起的电缆下垂都近似成抛物线的形状,现按操作要求,电缆最低点离水平地面不得小于6米.
(1)如图1,若水平距离间隔80米建造一个电缆塔柱,求此电缆塔柱用于固定电缆的位置离地面至少应有多少米的高度?
(2)如图2,若在一个坡度为1:5的斜坡上,按水平距离间隔50米架设两固定电缆的位置离地面高度为20米的塔柱.
①求这种情况下在竖直方向上,下垂的电缆与斜坡的最近距离为多少米?
②这种情况下,直接写出下垂的电缆与地面的最近距离为多少米?
17.
探究与发现:

探究一:我们知道,三角形的一个外角等于与它不相邻的两个内角的和.那么,三角形的一个内角与它不相邻的两个外角的和之间存在何种数量关系呢?
已知:如图1,∠FDC与∠ECD分别为△ADC的两个外角,试探究∠A与∠FDC+∠ECD的数量关系.
探究二:三角形的一个内角与另两个内角的平分线所夹的钝角之间有何种关系?
已知:如图2,在△ADC中,DP、CP分别平分∠ADC和∠ACD,试探究∠P与∠A的数量关系.
探究三:若将△ADC改为任意四边形ABCD呢?
已知:如图3,在四边形ABCD中,DP、CP分别平分∠ADC和∠BCD,试利用上述结论探究∠P与∠A+∠B的数量关系.
试卷分析
  • 【1】题量占比

    单选题:(7道)

    选择题:(1道)

    填空题:(3道)

    解答题:(6道)

  • 【2】:难度分析

    1星难题:0

    2星难题:0

    3星难题:0

    4星难题:1

    5星难题:0

    6星难题:11

    7星难题:0

    8星难题:2

    9星难题:2