2015-2016学年广东湛江一中高一下期末数学(理)试卷(带解析)

适用年级:高一
试卷号:625339

试卷类型:期末
试卷考试时间:2017/7/26

1.单选题(共9题)

1.
函数在一个周期内的图像如图所示,则此函数的解析式为(   )
A.B.
C.D.
2.
一个扇形的弧长与面积都等于6,这个扇形中心角的弧度数是( )
A.1 B.2C.3D.4
3.
若tan α<0,则( )
A.sin α<0 B.cos α<0
C.sin αcosα<0 D.sin α﹣cos α<0
4.
已知,那么tanα的值为( )
A.﹣2 B.2 C.D.
5.
下面的函数中,周期为π的偶函数是( )
A.y=sin2xB.y=cosC.y=cos2xD.y=sin
6.
为了得到函数的图象,可以将函数的图象( )而得到。
A.向右平移个单位B.向右平移个单位
C.向左平移个单位D.向左平移个单位
7.
已知,则等于()
A.60°或120°B.30°C.60°D.30°或150°
8.
下列向量组中,能作为表示它们所在平面内所有向量的基底的是( )
A.=(0,0),=(2,3)
B.=(1,﹣3),=(2,﹣6)
C.=(4,6),=(6,9)
D. =(2,3), =(﹣4,6)
9.
已知向量,则k的值是( )
A.﹣1B.C.D.

2.填空题(共4题)

10.
函数y=3sin(﹣2x)的单调增区间是
11.
关于下列命题:
①函数f(x)=|2cos2x﹣1|的最小正周期是π;
②函数y=cos2(﹣x)是偶函数;
③函数y=4sin(2x﹣)图象的一个对称中心是(,0);
④关于x的方程sinx+cosx=a(0≤x≤)有两相异实根,则实数a的取值范围是(1,2).
则所有正确命题的题号为:    
12.
sin75°cos30°﹣sin30°cos75°=
13.
已知向量=(1,﹣2),=(﹣2,2)则向量在向量方向上的投影为    

3.解答题(共6题)

14.
已知分别为三个内角,,的对边,.
(Ⅰ)求
(Ⅱ)若=2,的面积为,求.
15.
已知向量.
(1)求的值;
(2)若,且,求的值.
16.
已知函数f(x)=sin(x∈R).任取t∈R,若函数f(x)在区间[t,t+1]上的最大值为M(t),最小值为m(t),记g(t)=M(t)﹣m(t).
(Ⅰ)求函数f(x)的最小正周期及其图象的对称轴方程;
(Ⅱ)当t∈[﹣2,0]时,求函数g(t)的解析式.
17.
已知向量满足||=1,||=2,的夹角为120°.
(1)求及||;
(2)设向量的夹角为θ,求cosθ的值.
18.
某农科所对冬季昼夜温差大小与某反季节大豆新品种发芽多少之间的关系进行分析研究。他们分别记录了12月1日至12月5日的每天昼夜温差与实验室每天每100颗种子的发芽数,得到如下资料:
日期
12月1日
12月2日
12月3日
12月4日
12月5日
温差/
10
11
13
12
8
发芽数/颗
23
25
30
26
16
 
该农科所确定的研究方案是:先从这五组数据中选取2组,用剩下的3组数据求线性回归方程,再对被选取的2组数据进行检验.
(1)若选取的是12月1日与12月5日的两组数据,请根据12月2日至12月4日的数据,求出y关于x的线性回归方程=bx+a;
(2)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2颗,则认为 得到的线性回归方程是可靠的,试问(1)中所得的线性回归方程是否可靠?
(附:,其中为样本平均值)
19.
某校在一次趣味运动会的颁奖仪式上,高一、高二、高三各代表队人数分别为160人、120人、人.为了活跃气氛,大会组委会在颁奖过程中穿插抽奖活动,并用分层抽样的方法从三个代表队中共抽取20人到前排就坐,其中高二代表队有6人.

(1)求的值;
(2)把到前排就坐的高二代表队6人分别记为,现随机从中抽取2人上台抽奖.求没有上台抽奖的概率.
(3)抽奖活动的规则是:代表通过操作按键使电脑自动产生两个之间的均匀随机数,并按如图所示的程序框图执行.若电脑显示“中奖”,则该代表中奖;若电脑显示“谢谢”,则不中奖,求该代表中奖的概率.
试卷分析
  • 【1】题量占比

    单选题:(9道)

    填空题:(4道)

    解答题:(6道)

  • 【2】:难度分析

    1星难题:0

    2星难题:0

    3星难题:0

    4星难题:0

    5星难题:0

    6星难题:0

    7星难题:0

    8星难题:0

    9星难题:19