1.单选题- (共11题)
8.
如图,点A,B在反比例函数y=
(x>0)的图象上,点C,D在反比例函数y=
(k>0)的图象上,AC∥BD∥y轴,已知点A,B的横坐标分别为1;2,△OAC与△CBD的面积之和为
,则k的值为( )





A.2 | B.3 | C.4 | D.![]() |
11.
下列说法不正确的是( )
A.了解全市中学生对社会主义核心价值观的知晓度的情况,适合用抽样调查 |
B.若甲组数据方差S2甲=0.39,乙组数据方差S2乙=0.27,则乙组数据比甲组数据稳定 |
C.某种彩票中奖的概率是![]() |
D.旅客上飞机前的安检应该进行全面调查 |
2.填空题- (共3题)
13.
甲、乙两人在1200米长的直线道路上跑步,甲、乙两人同起点、同方向出发,并分别以不同的速度匀速前进,已知,甲出发30秒后,乙出发,乙到终点后立即返回,并以原来的速度前进,最后与甲相遇,此时跑步结束.如图,y(米)表示甲、乙两人之间的距离,x(秒)表示甲出发的时间,图中折线及数据表示整个跑步过程中y与x函数关系,那么,乙到达终点后_____秒与甲相遇.

14.
在一次班级数学测试中,65分为及格分数线,全班的总平均分为66分,而所有成绩及格的学生的平均分为72分,所有成绩不及格的学生的平均分为58分,为了减少不及格的学生人数,老师给每位学生的成绩加上了5分,加分之后,所有成绩及格的学生的平均分变为75分,所有成绩不及格的学生的平均分变为59分,已知该班学生人数大于15人少于30人,该班共有_____位学生.
3.解答题- (共8题)
16.
某公司销售两种椅子,普通椅子价格是每把180元,实木椅子的价格是每把400元.
(1)该公司在2019年第一月销售了两种椅子共900把,销售总金额达到了272000元,求两种椅了各销售了多少把?
(2)第二月正好赶上市里开展家俱展销活动,公司决定将普通椅子每把降30元后销售,实木椅子每把降价2a%(a>0)后销售,在展销活动的第一周,该公司的普通椅子销售量比上一月全月普通椅子的销售量多了
a%:实木椅子的销售量比第一月全月实木椅子的销售量多了a%,这一周两种椅子的总销售金额达到了251000元,求a的值.
(1)该公司在2019年第一月销售了两种椅子共900把,销售总金额达到了272000元,求两种椅了各销售了多少把?
(2)第二月正好赶上市里开展家俱展销活动,公司决定将普通椅子每把降30元后销售,实木椅子每把降价2a%(a>0)后销售,在展销活动的第一周,该公司的普通椅子销售量比上一月全月普通椅子的销售量多了

17.
材料:解形如(x+a)4+(x+b)4=c的一元四次方程时,可以先求常数a和b的均值
,然后设y=x+
.再把原方程换元求解,用种方法可以成功地消去含未知数的奇次项,使方程转化成易于求解的双二次方程,这种方法叫做“均值换元法.
例:解方程:(x﹣2)4+(x﹣3)4=1
解:因为﹣2和﹣3的均值为
,所以,设y=x﹣
,原方程可化为(y+
)4+(y﹣
)4=1,
去括号,得:(y2+y+
)2+(y2﹣y+
)2=1
y4+y2+
+2y3+
y2+
y+y4+y2+
﹣2y3+
y2﹣
y=1
整理,得:2y4+3y2﹣
=0(成功地消去了未知数的奇次项)
解得:y2=
或y2=
(舍去)
所以y=±
,即x﹣
=±
.所以x=3或x=2.
(1)用阅读材料中这种方法解关于x的方程(x+3)4+(x+5)4=1130时,先求两个常数的均值为______.
设y=x+____.原方程转化为:(y﹣_____)4+(y+_____)4=1130.
(2)用这种方法解方程(x+1)4+(x+3)4=706


例:解方程:(x﹣2)4+(x﹣3)4=1
解:因为﹣2和﹣3的均值为




去括号,得:(y2+y+


y4+y2+






整理,得:2y4+3y2﹣

解得:y2=


所以y=±



(1)用阅读材料中这种方法解关于x的方程(x+3)4+(x+5)4=1130时,先求两个常数的均值为______.
设y=x+____.原方程转化为:(y﹣_____)4+(y+_____)4=1130.
(2)用这种方法解方程(x+1)4+(x+3)4=706
18.
问题:探究函数y=x+
的图象和性质.
小华根据学习函数的方法和经验,进行了如下探究,下面是小华的探究过程,请补充完整:
(1)函数的自变量x的取值范围是:____;
(2)如表是y与x的几组对应值,请将表格补充完整:
(3)如图,在平面直角坐标系中描点并画出此函数的图象;

(4)进一步探究:结合函数的图象,写出此函数的性质(一条即可).

小华根据学习函数的方法和经验,进行了如下探究,下面是小华的探究过程,请补充完整:
(1)函数的自变量x的取值范围是:____;
(2)如表是y与x的几组对应值,请将表格补充完整:
x | … | ﹣3 | ﹣2 | ﹣![]() | ﹣1 | ![]() | ![]() | 1 | ![]() | 2 | 3 | … |
y | … | ﹣3![]() | ﹣3 | ![]() | ﹣3 | ﹣4![]() | 4![]() | | ![]() | | 3![]() | … |
(3)如图,在平面直角坐标系中描点并画出此函数的图象;

(4)进一步探究:结合函数的图象,写出此函数的性质(一条即可).
19.
已知:如图,二次函数y=﹣
x2+
x+2的图象交x轴于A点和B点(A点在B点左则),交y轴于E点,作直线EB,D是直线EB上方抛物线上的一个动点,过D点作直线l平行于直线E



A.M是直线EB上的任意点,N是直线l上的任意点,连接MO,NO始终保持∠MON为90°,以MO和ON为边,做矩形MON | B. (1)在D点移动过程中,求出当△DEB的面积最大时点D的坐标:在△DEB的面积最大时,求矩形MONC的面积的最小值; (2)在△DEB的面积最大时,线段ON交直线EB于点G,当点D,N,G,B四个点组成平行四边形时,求此时线段ON与抛物线的交点坐标. |

20.
已知:平行四边形ABCD中,AD=BD且∠ADB=90°,CE平分∠BCD交AB于点E,交BD于点N,过点E作AB的垂线交AD于点F,连接BF,与线段EC交于点G.
(1)如果边BC长为4,求△CBE的面积;
(2)求证:
EG=EN
(1)如果边BC长为4,求△CBE的面积;
(2)求证:


21.
已知:如图,△ABC为等腰直角三角形∠ACB=90°,过点C作直线CM,D为直线CM上一点,如果CE=CD且EC⊥CD.
(1)求证:△ADC≌△BEC;
(2)如果EC⊥BE,证明:AD∥EC.
(1)求证:△ADC≌△BEC;
(2)如果EC⊥BE,证明:AD∥EC.

22.
距离中考体育考试时间越来越近,某校想了解初三年级1500名学生跳绳情况,从中随机抽查了20名男生和20名女生的跳绳成绩,收集到了以下数据:
男生:192、166,189,186,184,182,178,177,174,170,188,168,205,165,158,150,188,172,180,188
女生:186,198,162,192,188,186,185,184,180,180,186,193,178,175,172,166,155,183,187,184.
根据统计数据制作了如下统计表:
两组数据的极差、平均数、中位数、众数如表所示:
(1)请将上面两个表格补充完整:a=____,b=_____,c=_____;
(2)请根据抽样调查的数据估计该校初三年级学生中考跳绳成绩能得满分(185个及以上)的同学大约能有多少人?
(3)体育组的江老师看了表格数据后认为初三年级的女生跳绳成绩比男生好,请你结合统计数据,写出支持江老师观点的理由.
男生:192、166,189,186,184,182,178,177,174,170,188,168,205,165,158,150,188,172,180,188
女生:186,198,162,192,188,186,185,184,180,180,186,193,178,175,172,166,155,183,187,184.
根据统计数据制作了如下统计表:
个数x | 150≤x<170 | 170≤x<185 | 185≤x<190 | x≥190 |
男生 | 5 | 8 | 5 | 2 |
女生 | 3 | 8 | a | 3 |
两组数据的极差、平均数、中位数、众数如表所示:
| 极差 | 平均数 | 中位数 | 众数 |
男生 | 55 | 178 | b | c |
女生 | 43 | 181 | 184 | 186 |
(1)请将上面两个表格补充完整:a=____,b=_____,c=_____;
(2)请根据抽样调查的数据估计该校初三年级学生中考跳绳成绩能得满分(185个及以上)的同学大约能有多少人?
(3)体育组的江老师看了表格数据后认为初三年级的女生跳绳成绩比男生好,请你结合统计数据,写出支持江老师观点的理由.
试卷分析
-
【1】题量占比
单选题:(11道)
填空题:(3道)
解答题:(8道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:2
5星难题:0
6星难题:12
7星难题:0
8星难题:3
9星难题:5