1.单选题- (共4题)
3.
如图,直线y1=2x+2交x轴、y轴于点A、C,直线
交x轴、y轴于点B、C,点P(m,1)是△ABC内部(包括边上)的一点,则m的最大值与最小值之差为( )



A.2 | B.2.5 | C.3 | D.3.5 |
2.填空题- (共8题)
3.解答题- (共7题)
15.
已知:如图,抛物线
的顶点为A(0,2),与x轴交于B(﹣2,0)、C(2,0)两点.
(1)求抛物线
的函数表达式;
(2)设点P是抛物线y上的一个动点,连接PO并延长至点Q,使OQ=2OP.若点Q正好落在该抛物线上,求点P的坐标;
(3)设点P是抛物线y上的一个动点,连接PO并延长至点Q,使OQ=mOP(m为常数);
①证明点Q一定落在抛物线
上;
②设有一个边长为m+1的正方形(其中m>3),它的一组对边垂直于x轴,另一组对边垂直于y轴,并且该正方形四个顶点正好落在抛物线
和
组成的封闭图形上,求线段PQ被该正方形的两条边截得线段长最大时点Q的坐标.

(1)求抛物线

(2)设点P是抛物线y上的一个动点,连接PO并延长至点Q,使OQ=2OP.若点Q正好落在该抛物线上,求点P的坐标;
(3)设点P是抛物线y上的一个动点,连接PO并延长至点Q,使OQ=mOP(m为常数);
①证明点Q一定落在抛物线

②设有一个边长为m+1的正方形(其中m>3),它的一组对边垂直于x轴,另一组对边垂直于y轴,并且该正方形四个顶点正好落在抛物线



16.
如图,A、B两点在反比例函数
(k>0,x>0)的图象上,AC⊥y轴于点C,BD⊥x轴于点D,点A的横坐标为a,点B的横坐标为b,且a<b.
(1)若△AOC的面积为4,求k值;
(2)若a=1,b=k,当AO=AB时,试说明△AOB是等边三角形;
(3)若OA=OB,证明:OC=OD.

(1)若△AOC的面积为4,求k值;
(2)若a=1,b=k,当AO=AB时,试说明△AOB是等边三角形;
(3)若OA=OB,证明:OC=OD.

17.
已知矩形纸片ABCD中,AB=6,BC=10,点E为BC边上的动点(点E不与点B、C重合),如图1所示,沿折痕AE翻折得到△AEB,设BE=m.
(1)当E、B′、D在同一直线上时,求m的值;
(2)如图2,点F在CD边上,沿EF再次折叠纸片,使点C的对应点C′在直线EB′上;
①求DF的最小值;
②点C′能否落在边AD上?若能,求出m的值,若不能,试说明理由.
(1)当E、B′、D在同一直线上时,求m的值;
(2)如图2,点F在CD边上,沿EF再次折叠纸片,使点C的对应点C′在直线EB′上;
①求DF的最小值;
②点C′能否落在边AD上?若能,求出m的值,若不能,试说明理由.

试卷分析
-
【1】题量占比
单选题:(4道)
填空题:(8道)
解答题:(7道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:1
5星难题:0
6星难题:3
7星难题:0
8星难题:5
9星难题:10