1.单选题- (共11题)
2.
已知关于某设各的使用年限x(单位:年)和所支出的维修费用y(单位:万元)有如下的统计资料,
由上表可得线性回归方程
,若规定当维修费用y>12时该设各必须报废,据此模型预报该设各使用年限的最大值为( )
x | 2 | 3 | 4 | 5 | 6 |
y | 2.2 | 3.8 | 5.5 | 6.5 | 7.0 |
由上表可得线性回归方程

A.7 | B.8 | C.9 | D.10 |
3.
下面茎叶图记录了甲、乙两组各五名学生在一次英语听力测试中的成绩(单位:分),已知甲组数据的平均数为18,乙组数据的中位数为16,则
的值分别为()



A.18,6 | B.8,16 | C.8,6 | D.18,16 |
5.
现用系统抽样方法从已编号(1-60)的60枚新型导弹中,随机抽取6枚进行试验,则所选取的6枚导弹的编号可能是( )
A.5,10,15,20,25,30 | B.2,4,8,16,32,48 |
C.5,15,25,35,45,55 | D.1,12,34,47,51,60 |
2.填空题- (共5题)
12.
省农科站要检测某品牌种子的发芽率,计划采用随机数表法从该品牌800粒种子中抽取60粒进行检测,现将这800粒种子编号如下001,002,…,800,若从随机数表第8行第7列的数7开始向右读,则所抽取的第4粒种子的编号是___________.(下表是随机数表第7行至第9行)


13.
某研究性学习小组要进行城市空气质量调查,按地域把48个城市分成甲、乙、丙三组,其中甲、乙两组的城市数分别为8和24,若用分层抽样从这48个城市抽取12个进行调查,则丙组中应抽取的城市数为___________.
16.
为了鼓励市民节约用水,太原市对已实施“一户一表、水表出户”的居民生活用水的收费标准规定如下:一级水量每户每月9立方米及以下,每立方米销售价格2.30元;二级水量每户每月9立方米以上至13.5立方米,每立方米销售价格为4.60元;三级水量每户每月13.5立方米及以上,每立方米销售价格为6.90元.
(1)写出太原市居民每户每月生活用水费用
(单位:元)与其用水量
(单位:立方米)之间的关系式;
(2)如图是按上述规定计算太原市居民每户每月生活用水费用的程序框图,但步骤没有全部给出,请将其补充完整(将答案写在下列横线上).①______________;②_______________;③______________.

(1)写出太原市居民每户每月生活用水费用


(2)如图是按上述规定计算太原市居民每户每月生活用水费用的程序框图,但步骤没有全部给出,请将其补充完整(将答案写在下列横线上).①______________;②_______________;③______________.

3.解答题- (共3题)
17.
某公司是一家专做某产品国内外销售的企业,第一批产品在上市40天内全部售完,该公司对第一批产品的销售情况进行了跟踪调查,其调查结果如下:图①中的折线是国内市场的销售情况;图②中的抛物线是国外市场的销售情况;图③中的折线是销售利润与上市时间的关系(国内外市场相同),

(1)求该公司第一批产品在国内市场的日销售量f(t)(单位:万件),国外市场的日销售量g(t)(单位:万件)与上市时间t(单位:天)的关系式;
(2)求该公司第一批产品日销售利润Q(t)(单位:万元)与上市时间t(单位:天)的关系式.(12分)

(1)求该公司第一批产品在国内市场的日销售量f(t)(单位:万件),国外市场的日销售量g(t)(单位:万件)与上市时间t(单位:天)的关系式;
(2)求该公司第一批产品日销售利润Q(t)(单位:万元)与上市时间t(单位:天)的关系式.(12分)
18.
某学校团委组织了“文明出行,爱我中华”的知识竞赛,从参加考试的学生中抽出60名学生,将其成绩(单位:分)整理后,得到如下频率分布直方图(其中分组区间为
,
,…,
).

(1)求成绩在
的频率,并补全此频率分布直方图;
(2)求这次考试平均分的估计值;
(3)若从成绩在
和
的学生中任选两人,求他们的成绩在同一分组区间的概率.




(1)求成绩在

(2)求这次考试平均分的估计值;
(3)若从成绩在


试卷分析
-
【1】题量占比
单选题:(11道)
填空题:(5道)
解答题:(3道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:0
5星难题:0
6星难题:0
7星难题:0
8星难题:0
9星难题:19