2018秋人教A版高中数学选修2-1模块复习课3

适用年级:高二
试卷号:609046

试卷类型:课时练习
试卷考试时间:2018/10/19

1.解答题(共3题)

1.
如图所示,A,B分别是椭圆C:=1(a>b>0)的左右顶点,F为其右焦点,2是|AF|与|FB|的等差中项,是|AF|与|FB|的等比中项.点P是椭圆C上异于A,B的任一动点,过点A作直线l⊥x轴.以线段AF为直径的圆交直线AP于点A,M,连接FM交直线l于点Q.
(1)求椭圆C的方程;
(2)试问在x轴上是否存在一个定点N,使得直线PQ必过该定点N?若存在,求出点N的坐标,若不存在,说明理由.
2.
已知椭圆=1(a>b>0)的左、右焦点分别为F1,F2,过左焦点F1(-2,0)作x轴的垂线交椭圆于P,Q两点,PF2与y轴交于E,A,B是椭圆上位于PQ两侧的动点.
(1)求椭圆的离心率e和标准方程;
(2)当∠APQ=∠BPQ时,直线AB的斜率kAB是否为定值?若是,求出该定值;若不是,请说明理由.
3.
抛物线y2=2px(p>0)与直线y=x+1相切,A(x1,y1),B(x2,y2)(x1≠x2)是抛物线上两个动点,F为抛物线的焦点,且|AF|+|BF|=8.
(1)求p的值.
(2)线段AB的垂直平分线l与x轴的交点是否为定点?若是,求出交点坐标;若不是,说明理由.
(3)求直线l的斜率的取值范围.
试卷分析
  • 【1】题量占比

    解答题:(3道)

  • 【2】:难度分析

    1星难题:0

    2星难题:0

    3星难题:0

    4星难题:0

    5星难题:0

    6星难题:0

    7星难题:0

    8星难题:0

    9星难题:3