1.选择题- (共2题)
2.如图,点O为圆柱形木块底面的圆心,AD是底面圆的一条弦,优弧 {#mathml#}{#/mathml#} 的长为底面圆的周长的 {#mathml#}{#/mathml#} .过AD和母线AB的平面将木块剖开,得到截面ABCD,已知四边形ABCD的周长为40.
(Ⅰ)设AD=x,求⊙O的半径(用x表示);
(Ⅱ)求这个圆柱形木块剩下部分(如图一)侧面积的最大值.(剩下部分几何体的侧面积=圆柱侧面余下部分的面积+四边形ABCD的面积)
2.单选题- (共9题)
3.填空题- (共6题)
13.
设一次函数y=kx+2k-3(k≠0),对于任意两个k的值k1,k2,分别对应两个一次函数值y1,y2,若k1k2<0,当x=m时,取相应y1,y2,中的较小值p,则p的最大值是________.
17.
体育课上,20人一组进行足球比赛,每人射点球5次,已知某一组的进球总数为49个,进球情况记录如下表,其中进2个球的有x人,进3个球的有y人,若(x,y)恰好是两条直线的交点坐标,则这两条直线的解析式是
A.y=x+9与
B.y=﹣x+9与
C.y=﹣x+9与
D.y=x+9与
进球数 | 0 | 1 | 2 | 3 | 4 | 5 |
人数 | 1 | 5 | x | y | 3 | 2 |
A.y=x+9与

B.y=﹣x+9与

C.y=﹣x+9与

D.y=x+9与

4.解答题- (共4题)
18.
某工厂计划生产A、B两种产品共60件,需购买甲、乙两种材料.生产一件A产品需甲种材料4千克,乙种材料1千克;生产一件B产品需甲、乙两种材料各3千克.经测算,购买甲、乙两种材料各1千克共需资金60元;购买甲种材料2千克和乙种材料3千克共需资金155元.
(1)甲、乙两种材料每千克分别是多少元?
(2)现工厂用于购买甲、乙两种材料的资金不能超过10000元,且生产B产品要超过38件,问有哪几种符合条件的生产方案?
(3)在(2)的条件下,若生产一件A产品需加工费40元,若生产一件B产品需加工费50元,应选择哪种生产方案,才能使生产这批产品的成本最低?请直接写出方案.
(1)甲、乙两种材料每千克分别是多少元?
(2)现工厂用于购买甲、乙两种材料的资金不能超过10000元,且生产B产品要超过38件,问有哪几种符合条件的生产方案?
(3)在(2)的条件下,若生产一件A产品需加工费40元,若生产一件B产品需加工费50元,应选择哪种生产方案,才能使生产这批产品的成本最低?请直接写出方案.
20.
一次函数y=﹣
x+1的图象与x轴、y轴分别交于点A、B,以AB为边在第一象限内做等边△ABC

(1)求△ABC的面积和点C的坐标;
(2)如果在第二象限内有一点P(a,
),试用含a的代数式表示四边形ABPO的面积.
(3)在x轴上是否存在点M,使△MAB为等腰三角形?若存在,请直接写出点M的坐标;若不存在,请说明理由.


(1)求△ABC的面积和点C的坐标;
(2)如果在第二象限内有一点P(a,

(3)在x轴上是否存在点M,使△MAB为等腰三角形?若存在,请直接写出点M的坐标;若不存在,请说明理由.
试卷分析
-
【1】题量占比
选择题:(2道)
单选题:(9道)
填空题:(6道)
解答题:(4道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:1
5星难题:0
6星难题:12
7星难题:0
8星难题:5
9星难题:1