1.单选题- (共9题)
7.
下列等式从左到右的变形是因式分解的是( )
A.x(x﹣2)=x2﹣2x | B.x2+2xy+1=x(x+2y)+1 |
C.15a2b=3a2•5b | D.a2b2﹣1=(ab+1)(ab﹣1) |
9.
如图,在△ABC和△DEC中,已知AB=DE,还需添加两个条件才能使△ABC≌△DEC,不能添加的一组条件是


A.BC=EC,∠B=∠E | B.BC=EC,AC=DC |
C.BC=DC,∠A=∠D | D.∠B=∠E,∠A=∠D |
2.选择题- (共1题)
3.填空题- (共6题)
4.解答题- (共9题)
21.
探索题:(x﹣1)(x+1)=x2﹣1,(x﹣1)(x2+x+1)=x3﹣1,(x﹣1)(x3+x2+x+1)=x4﹣1,(x﹣1)(x4+x3+x2+x+1)=x5﹣1
根据前面的规律,回答下列问题:
(1)(x﹣1)(xn+xn﹣1+xn﹣2+…+x3+x2+x+1)=_____.
(2)当x=3时,(3﹣1)(32015+32014+32013+…+33+32+3+1)=_____.
(3)求:22014+22013+22012+…+23+22+2+1的值.(请写出解题过程)
(4)求22016+22015+22014+…+23+22+2+1的值的个位数字.(只写出答案)
根据前面的规律,回答下列问题:
(1)(x﹣1)(xn+xn﹣1+xn﹣2+…+x3+x2+x+1)=_____.
(2)当x=3时,(3﹣1)(32015+32014+32013+…+33+32+3+1)=_____.
(3)求:22014+22013+22012+…+23+22+2+1的值.(请写出解题过程)
(4)求22016+22015+22014+…+23+22+2+1的值的个位数字.(只写出答案)
23.
(1)如图1:在四边形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°.E,F分别是BC,CD上的点.且∠EAF=60°.探究图中线段BE,EF,FD之间的数量关系并证明. (提示:延长CD到G,使得DG=BE)
(2)如图2,若在四边形ABCD中,AB=AD,∠B+∠D=180°.E,F分别是BC,CD上的点,且∠EAF=
∠BAD,上述结论是否仍然成立,并说明理由;

(3)如图3,在某次军事演习中,舰艇甲在指挥中心(O处)北偏西20°的A处,舰艇乙在指挥中心南偏东60°的B处,并且两舰艇到指挥中心的距离相等,接到行动指令后,舰艇甲向正东方向以60海里/小时的速度前进,舰艇乙沿北偏东50°的方向以80海里/小时的速度前进.1小时后,指挥中心观测到甲、乙两舰艇分别到达E,F处,且两舰艇之间的夹角为70°,试求此时两舰艇之间的距离.(可利用(2)的结论)
(2)如图2,若在四边形ABCD中,AB=AD,∠B+∠D=180°.E,F分别是BC,CD上的点,且∠EAF=


(3)如图3,在某次军事演习中,舰艇甲在指挥中心(O处)北偏西20°的A处,舰艇乙在指挥中心南偏东60°的B处,并且两舰艇到指挥中心的距离相等,接到行动指令后,舰艇甲向正东方向以60海里/小时的速度前进,舰艇乙沿北偏东50°的方向以80海里/小时的速度前进.1小时后,指挥中心观测到甲、乙两舰艇分别到达E,F处,且两舰艇之间的夹角为70°,试求此时两舰艇之间的距离.(可利用(2)的结论)
试卷分析
-
【1】题量占比
单选题:(9道)
选择题:(1道)
填空题:(6道)
解答题:(9道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:4
5星难题:0
6星难题:11
7星难题:0
8星难题:2
9星难题:7