1.单选题- (共10题)
5.
矩形OABC在平面直角坐标系中的位置如图所示,点B的坐标为(3,4),点D的坐标为(2,0),E为AB上的点,当△CDE的周长最小时,点E的坐标为( )


A.(1,3) | B.(3,1) | C.(4,1) | D.(3,2) |
2.填空题- (共4题)
11.
如图1,在平面直角坐标系中,将▱ABCD放置在第一象限,且AB∥x轴,直线y=﹣x从原点出发沿x轴正方向平移,在平移过程中直线被平行四边形截得的线段长度l与直线在x轴上平移的距离m的函数图象如图2,那么ABCD面积为_____.

3.解答题- (共8题)
17.
如图,已知直线
与坐标轴交于
,
两点,点
是
轴正半轴上一点,并且
,点
是线段
上一动点(不与端点重合),过点
作
轴,交
于
.
(1)求
所在直线的解析式;
(2)若
轴于
,且点
的坐标为
,请用含
的代数式表示
与
的长;
(3)在
轴上是否存在一点
,使得
为等腰直角三角形?若存在,请直接写出点
的坐标;若不存在,请说明理由.












(1)求

(2)若







(3)在





18.
某汽车出发前油箱内有油42L,行驶若干小时后,在途中加油站加油若干升.邮箱中剩余油量Q(L)与行驶时间t(h)之间的函数关系如图所示.

(1)汽车行驶 h后加油,加油量为 L;
(2)求加油前油箱剩余油量Q与行驶时间t之间的函数关系式;
(3)如果加油站离目的地还有200km,车速为40km/h,请直接写出汽车到达目的地时,油箱中还有多少汽油?

(1)汽车行驶 h后加油,加油量为 L;
(2)求加油前油箱剩余油量Q与行驶时间t之间的函数关系式;
(3)如果加油站离目的地还有200km,车速为40km/h,请直接写出汽车到达目的地时,油箱中还有多少汽油?
19.
某市在城中村改造中,需要种植
、
两种不同的树苗共
棵,经招标,承包商以
万元的报价中标承包了这项工程,根据调查及相关资料表明,
、
两种树苗的成本价及成活率如表:
设种植
种树苗
棵,承包商获得的利润为
元.
(
)求
与
之间的函数关系式.
(
)政府要求栽植这批树苗的成活率不低于
,承包商应如何选种树苗才能获得最大利润?最大利润是多少?






品种 | 购买价(元/棵) | 成活率 |
![]() | ![]() | ![]() |
![]() | ![]() | ![]() |
设种植



(



(


20.
如图,在
中,点
是
边上的一个动点,过点
作直线
,设
交
的角平分线于点
,交
的外角平分线于点
.
(1)求证:
;
(2)当点
运动到何处时,四边形
是矩形?并证明你的结论.
(3)当点
运动到何处,且
满足什么条件时,四边形
是正方形?并说明理由.










(1)求证:

(2)当点


(3)当点




试卷分析
-
【1】题量占比
单选题:(10道)
填空题:(4道)
解答题:(8道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:1
5星难题:0
6星难题:11
7星难题:0
8星难题:7
9星难题:3