1.单选题- (共12题)
6.
如图,点A,B在反比例函数
的图象上,点C,D在反比例函数
的图象上,AC//BD//y轴,已知点A,B的横坐标分别为1,2,△OAC与△ABD的面积之和为
,则k的值为( )





A.4 | B.3 | C.2 | D.![]() |
9.
如图,在菱形ABCD中,点E,F,G,H分别是边AB,BC,CD和DA的中点,连接EF,FG,GH和HE,若EH=2EF=2,则菱形ABCD的边长为( )


A.![]() ![]() | B.2 ![]() ![]() | C.2 ![]() | D.4 |
11.
老师在计算学生每学期的总成绩时,是把平时成绩和考试成绩按如图所示的比例计算.如果一个学生的平时成绩为70分,考试成绩为90分,那么他的学期总评成绩应为( )


A.70分 ![]() | B.90分 | C.82分 ![]() | D.80分 |
2.选择题- (共3题)
3.填空题- (共6题)
17.
已知△ABC的三个顶点为A(-1,1),B(-1,3),C(-3,-3),将△ABC向右平移m(m>0)个单位后,△ABC某一边的中点恰好落在反比例函数y=
的图象上,则m的值为________。 


21.
“龟兔首次赛跑”之后,输了比赛的兔子没有气馁,总结反思后,和乌龟约定再赛一场.图中的函数图象刻画了“龟兔再次赛跑”的故事(x表示乌龟从起点出发所行的时间,y1表示乌龟所行的路程,y2表示兔子所行的路程).有下列说法:

①“龟兔再次赛跑”的路程为1000米;
②兔子和乌龟同时从起点出发;
③乌龟在途中休息了10分钟;
④兔子在途中750米处追上乌龟.
其中正确的说法是 .(把你认为正确说法的序号都填上)

①“龟兔再次赛跑”的路程为1000米;
②兔子和乌龟同时从起点出发;
③乌龟在途中休息了10分钟;
④兔子在途中750米处追上乌龟.
其中正确的说法是 .(把你认为正确说法的序号都填上)
4.解答题- (共9题)
25.
如图,已知直线l1:y=-2x+4与x、y轴分别交于点N、C,与直线l2:y=kx+b(k≠0)交于点M,点M的横坐标为1,直线l2与x轴的交点为A(-2,0)

(1)求k,b的值;
(2)求四边形MNOB的面积.

(1)求k,b的值;
(2)求四边形MNOB的面积.
26.
如图,四边形ABCD的四个顶点分别在反比例函数
与
(x>0,0<m<n)的图象上,对角线BD//y轴,且BD⊥AC于点P.已知点B的横坐标为4.
(1)当m=4,n=20时.
①若点P的纵坐标为2,求直线AB的函数表达式.
②若点P是BD的中点,试判断四边形ABCD的形状,并说明理由.
(2)四边形ABCD能否成为正方形?若能,求此时m,n之间的数量关系;若不能,试说明理由.


(1)当m=4,n=20时.
①若点P的纵坐标为2,求直线AB的函数表达式.
②若点P是BD的中点,试判断四边形ABCD的形状,并说明理由.
(2)四边形ABCD能否成为正方形?若能,求此时m,n之间的数量关系;若不能,试说明理由.

27.
如图,在△AOB中,∠ABO=90°,OB=4,AB=8,反比例函数y=
在第一象限内的图象分别交OA,AB于点C和点D,且△BOD的面积S△BOD=4.
(1)求反比例函数解析式;
(2)求点C的坐标.

(1)求反比例函数解析式;
(2)求点C的坐标.

29.
如图1,在正方形ABCD中,点E、F分别是边BC、AB上的点,且CE=B

(1)请判断:FG与CE的数量关系是 ________,位置关系是________ 。
(2)如图2,若点E、F分别是边CB、BA延长线上的点,其他条件不变,(1)中结论是否仍然成立?请作出判断并给予证明;
(3)如图3,若点E、F分别是边BC、AB延长线上的点,其他条件不变,(1)中结论是否仍然成立?请直接写出你的判断。
A.连结DE,过点E作EG⊥DE,使EG=DE,连结FG、FC |

(1)请判断:FG与CE的数量关系是 ________,位置关系是________ 。
(2)如图2,若点E、F分别是边CB、BA延长线上的点,其他条件不变,(1)中结论是否仍然成立?请作出判断并给予证明;
(3)如图3,若点E、F分别是边BC、AB延长线上的点,其他条件不变,(1)中结论是否仍然成立?请直接写出你的判断。
试卷分析
-
【1】题量占比
单选题:(12道)
选择题:(3道)
填空题:(6道)
解答题:(9道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:1
5星难题:0
6星难题:14
7星难题:0
8星难题:2
9星难题:10