1.单选题- (共7题)
1.
已知3是关于x的方程x2﹣(m+1)x+2m=0的一个实数根,并且这个方程的两个实数根恰好是等腰△ABC的两条边的边长,则△ABC的周长为( )
A.7 | B.10 | C.11 | D.10或11 |
4.
已知关于x的方程(x﹣1)[(k﹣1)x+(k﹣3)]=0(k是常数),则下列说法中正确的是( )
A.方程一定有两个不相等的实数根 | B.方程一定有两个实数根 |
C.当k取某些值时,方程没有实数根 | D.方程一定有实数根 |
2.填空题- (共5题)
3.解答题- (共5题)
15.
解下列方程:
(1)9(y+4)2﹣49=0
(2)2x2+3=7x(配方法);
(3)2x2﹣7x+5="0" (公式法)
(4)x2=6x+16
(5)2x2﹣7x﹣18=0
(6)(2x﹣1)(x+3)=4.
(1)9(y+4)2﹣49=0
(2)2x2+3=7x(配方法);
(3)2x2﹣7x+5="0" (公式法)
(4)x2=6x+16
(5)2x2﹣7x﹣18=0
(6)(2x﹣1)(x+3)=4.
16.
阅读下面的例题与解答过程:
例.解方程:x2﹣|x|﹣2=0.
解:原方程可化为|x|2﹣|x|﹣2=0.
设|x|=y,则y2﹣y﹣2=0.
解得 y1=2,y2=﹣1.
当y=2时,|x|=2,∴x=±2;
当y=﹣1时,|x|=﹣1,∴无实数解.
∴原方程的解是:x1=2,x2=﹣2.
在上面的解答过程中,我们把|x|看成一个整体,用字母y代替(即换元),使得问题简单化、明朗化,解答过程更清晰.这是解决数学问题中的一种重要方法﹣﹣换元法.请你仿照上述例题的解答过程,利用换元法解下列方程:
(1)x2﹣2|x|=0;
(2)x2﹣2x﹣4|x﹣1|+5=0.
例.解方程:x2﹣|x|﹣2=0.
解:原方程可化为|x|2﹣|x|﹣2=0.
设|x|=y,则y2﹣y﹣2=0.
解得 y1=2,y2=﹣1.
当y=2时,|x|=2,∴x=±2;
当y=﹣1时,|x|=﹣1,∴无实数解.
∴原方程的解是:x1=2,x2=﹣2.
在上面的解答过程中,我们把|x|看成一个整体,用字母y代替(即换元),使得问题简单化、明朗化,解答过程更清晰.这是解决数学问题中的一种重要方法﹣﹣换元法.请你仿照上述例题的解答过程,利用换元法解下列方程:
(1)x2﹣2|x|=0;
(2)x2﹣2x﹣4|x﹣1|+5=0.
试卷分析
-
【1】题量占比
单选题:(7道)
填空题:(5道)
解答题:(5道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:1
5星难题:0
6星难题:14
7星难题:0
8星难题:0
9星难题:2