内蒙古自治区赤峰市翁牛特旗乌丹第三中学2019届九年级上学期期末考试数学试题

适用年级:初三
试卷号:591856

试卷类型:期末
试卷考试时间:2019/2/20

1.单选题(共6题)

1.
某药品经过两次降价,每瓶零售价由168元降为108元,已知两次降价的百分率相同,设每次降价的百分率为x,根据题意列方程得(  )
A.168(1﹣x)2=108B.168(1﹣x2)=108
C.168(1﹣2x)=108D.168(1+x)2=108
2.
对实数a、b定义新运算“*”如下:,如3*2=3,.若x2+x﹣2=0的两根为x1,x2,则x1*x2是(  )
A.1B.﹣2C.﹣1D.2
3.
如图,点E为菱形ABCD边上的一个动点,并延A→B→C→D的路径移动,设点E经过的路径长为x,△ADE的面积为y,则下列图象能大致反映y与x的函数关系的是(  )
A.B.
C.D.
4.
将抛物线y=x2﹣6x+21向左平移2个单位后,得到新抛物线的解析式为(  )
A.y=(x﹣8)2+5B.y=(x﹣4)2+5C.y=(x﹣8)2+3D.y=(x﹣4)2+3
5.
如图,一次函数y1=ax+b图象和反比例函数y2图象交于A(1,2),B(﹣2,﹣1)两点,若y1<y2,则x的取值范围是(   )
A.x<﹣2B.x<﹣2或0<x<1
C.x<1D.﹣2<x<0或x>1
6.
下列图形中既是中心对称图形又是轴对称图形的是(   )
A.B.C.D.

2.填空题(共4题)

7.
若二次函数y=2(x+1)2+3的图象上有三个不同的点Ax1,4)、Bx1+x2n)、Cx2,4),则n的值为_____.
8.
已知直线y=kx(k≠0)经过点(12,﹣5),将直线向上平移m(m>0)个单位,若平移后得到的直线与半径为6的⊙O相交(点O为坐标原点),则m的取值范围为_____.
9.
如图,抛物线y=ax2+bx+c的对称轴是x=﹣1,且过点(,0).有下列结论:①abc>0;②25a﹣10b+4c=0;③a﹣2b+4c=0;④a﹣b≥m(am﹣b);⑤3b+2c>0;其中所有正确的结论是_____(填写正确结论的序号).
10.
请写出一个图象与直线y=x无交点的反比例函数的表达式:_____.

3.解答题(共5题)

11.
(1)解方程:x(x﹣2)=2﹣x;
(2)计算:(﹣2)0﹣3tan30°+|﹣2|
12.
已知二次函数y=ax2+bx﹣3a经过点A(﹣1,0)、C(0,3),与x轴交于另一点B,抛物线的顶点为D.

(1)求此二次函数解析式;
(2)连接DC、BC、DB,求证:△BCD是直角三角形;
(3)在对称轴右侧的抛物线上是否存在点P,使得△PDC为等腰三角形?若存在,求出符合条件的点P的坐标;若不存在,请说明理由.
13.
在平面直角坐标系中,一次函数的图象与反比例函数(k≠0)图象交于A、B两点,与y轴交于点C,与x轴交于点D,其中A点坐标为(﹣2,3).

(1)求一次函数和反比例函数解析式.
(2)若将点C沿y轴向下平移4个单位长度至点F,连接AF、BF,求△ABF的面积.
(3)根据图象,直接写出不等式的解集.
14.
某学校开展以素质提升为主题的研学活动,推出了以下四个项目供学生选择:
A.模拟驾驶;B.军事竞技;C.家乡导游;D.植物识别.学校规定:每个学生都必须报名且只能选择其中一个项目.八年级(3)班班主任宁老师对全
班学生选择的项目情况进行了统计,并绘制了如下两幅不完整的统计图.请结合统计图中的信息,解决下列问题:

(1)八年级(3)班学生总人数是多少,并将条形统计图补充完整;
(2)宁老师发现报名参加“植物识别”的学生中恰好有两名男生,现准备从这组学生中任意挑选两名担任活动记录员,那么恰好选1名男生和1名女生担任活动记录员的概率;
(3)若学校学生总人数为2000人,根据八年级(3)班的情况,估计全校报名军事竞技的学生有多少人?
15.
某市政府大力支持大学生创业.李明在政府的扶持下投资销售一种进价为20元的护眼台灯.销售过程中发现,每月销售量Y(件)与销售单价x(元)之间的关系可近似的看作一次函数:y=﹣10x+500.
(1)设李明每月获得利润为W(元),当销售单价定为多少元时,每月获得利润最大?
(2)根据物价部门规定,这种护眼台灯不得高于32元,如果李明想要每月获得的利润2000元,那么销售单价应定为多少元?
试卷分析
  • 【1】题量占比

    单选题:(6道)

    填空题:(4道)

    解答题:(5道)

  • 【2】:难度分析

    1星难题:0

    2星难题:0

    3星难题:0

    4星难题:0

    5星难题:0

    6星难题:7

    7星难题:0

    8星难题:3

    9星难题:5