1.单选题- (共8题)
3.
为了美化校园环境,加大校园绿化投资.某区前年用于绿化的投资为18万元,今年用于绿化的投资为33万元,设这两年用于绿化投资的年平均增长率为x,则( )
A.18(1+2x)=33 | B.18(1+x2)=33 |
C.18(1+x)2=33 | D.18(1+x)+18(1+x)2=33 |
6.
如图,分别以Rt△ABC的斜边AB,直角边AC为边向外作等边△ABD和△ACE,F为AB的中点,DE,AB相交于点G.连接EF,若∠BAC=30°,下列结论:①EF⊥AC;②四边形ADFE为菱形;③AD=4AG;④△DBF≌△EFA.则正确结论的序号是( )


A.①③ | B.②④ | C.①③④ | D.②③④ |
2.填空题- (共6题)
3.解答题- (共7题)
17.
某游泳池有900立方米水,每次换水前后水的体积保持不变.设放水的平均速度为v立方米/小时,将池内的水放完需t小时,
(1)求v关于t的函数表达式,并写出自变量t的取值范围;
(2)若要求在2.5小时至3小时内(包括2.5小时与3小时)把游泳池内的水放完,求放水速度的范围.
(1)求v关于t的函数表达式,并写出自变量t的取值范围;
(2)若要求在2.5小时至3小时内(包括2.5小时与3小时)把游泳池内的水放完,求放水速度的范围.
18.
如图,已知在△ABC中,D为BC的中点,连接AD,E为AD的中点,过点A作BC的平行线交BE的延长线于点F,连接CF.
(1)求证:四边形ADCF为平行四边形.
(2)当四边形ADCF为矩形时,AB与AC应满足怎样的数量关系?请说明理由.
(1)求证:四边形ADCF为平行四边形.
(2)当四边形ADCF为矩形时,AB与AC应满足怎样的数量关系?请说明理由.

19.
如图,已知正方形ABCD的边长为1,正方形CEFG的面积为S
,点E在DC边上,点G在BC的延长线上,设以线段AD和DE为邻边的矩形的面积为S
,且S
=S
.

(1)求线段CE的长;
(2)若点H为BC边的中点,连接HD,求证:HD=HG.





(1)求线段CE的长;
(2)若点H为BC边的中点,连接HD,求证:HD=HG.
20.
(1)如图1,将一矩形纸片ABCD沿着EF折叠,CE交AF于点G,过点G作GH∥EF,交线段BE于点H.

①判断EG与EH是否相等,并说明理由.
②判断GH是否平分∠AGE,并说明理由.
(2)如图2,如果将(1)中的已知条件改为折叠三角形纸片ABC,其它条件不变.
①判断EG与EH是否相等,并说明理由.
②判断GH是否平分∠AGE,如果平分,请说明理由;如果不平分,请用等式表示∠EGH,∠AGH与∠C的数量关系,并说明理由.

①判断EG与EH是否相等,并说明理由.
②判断GH是否平分∠AGE,并说明理由.
(2)如图2,如果将(1)中的已知条件改为折叠三角形纸片ABC,其它条件不变.
①判断EG与EH是否相等,并说明理由.
②判断GH是否平分∠AGE,如果平分,请说明理由;如果不平分,请用等式表示∠EGH,∠AGH与∠C的数量关系,并说明理由.
试卷分析
-
【1】题量占比
单选题:(8道)
填空题:(6道)
解答题:(7道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:0
5星难题:0
6星难题:14
7星难题:0
8星难题:4
9星难题:3