1.单选题- (共10题)
6.
在一条笔直的航道上依次有甲、乙、丙三个港口,一艘船从甲出发,沿直线匀速行驶经过乙港驶向丙港,最终达到丙港,设行驶x (h)后,船与乙港的距离为y (km),y与x的关系如图所示,则下列说法正确的是( )


A.甲港与丙港的距离是90km | B.船在中途休息了0.5小时 |
C.船的行驶速度是45km/h | D.从乙港到达丙港共花了1.5小时 |
2.填空题- (共5题)
14.
如图,△ABC中,AB=AC=15,∠BAC=120°,小明要将该三角形分割成两个直角三角形和两个等腰三角形,他想出了如下方案:在AB上取点D,过点D画DE∥AC交BC于点E,连结AE,在AC上取合适的点F,连结EF可得到4个符合条件的三角形,则满足条件的AF长是______.

3.解答题- (共6题)
17.
某校开展拓展课程展示活动,需要制作A,B两种型号的宣传广告共20个,已知A,B两种广告牌的单价分别为40元,70元
(1)若根据活动需要,A种广告牌数量与B种广告牌数量之比为3:2,需要多少费用?
(2)若需制作A,B两种型号的宣传广告牌,其中B种型号不少于5个,制作总费用不超过1000元,则有几种制作方案?每一种制作方案的费用分别是多少?
(1)若根据活动需要,A种广告牌数量与B种广告牌数量之比为3:2,需要多少费用?
(2)若需制作A,B两种型号的宣传广告牌,其中B种型号不少于5个,制作总费用不超过1000元,则有几种制作方案?每一种制作方案的费用分别是多少?
18.
如图,抛物线
与
轴的负半轴相交于点
,将抛物线
平移得到抛物线
,
与
相交于点
,直线
交
于点
,且
.

(1)求点
的坐标;
(2)写出一种将抛物线
平移到抛物线
的方法;
(3)在
轴上找点
,使得
的值最小,求点
的坐标.













(1)求点

(2)写出一种将抛物线


(3)在




20.
如图,△ABC是圆内接等腰三角形,其中AB=AC,点P在
上运动(点P与点A在弦BC的两侧),连结PA,PB,PC,设∠BAC=α,
=y,小明为探究y随α的变化情况,经历了如下过程
(1)若点P在弧BC的中点处,α=60°时,y的值是______.
(2)小明探究α变化获得了一部分数据,请你填写表格中空缺的数据.在如图2平面直角坐标系中以表中各组对应值为点的坐标进行描点,并画出函数图象:
(3)从图象可知,y随着α的变化情况是______;y的取值范围是______.


(1)若点P在弧BC的中点处,α=60°时,y的值是______.
(2)小明探究α变化获得了一部分数据,请你填写表格中空缺的数据.在如图2平面直角坐标系中以表中各组对应值为点的坐标进行描点,并画出函数图象:
α | … | 30° | 60° | 90° | 120° | 150° | 170° | … |
y | .. | 0.52 | | | 1.73 | 1.93 | 1.99 | … |
(3)从图象可知,y随着α的变化情况是______;y的取值范围是______.

21.
定义:如果一个四边形存在一条对角线,使得这条对角线是四边形某两边的比例中项,则称这个四边形为“闪亮四边形”,这条对角线称为“亮线”.如图1,四边形ABCD中,AB=AC=AD,满足AC2=AB•AD,四边形ABCD是闪亮四边形,AC是亮线.
(1)以下说法正确的是______(填写序号)
①正方形不可能是闪亮四边形;
②矩形中存在闪亮四边形;
③若一个菱形是闪亮四边形,则必有一个内角是60°.
(2)如图2,四边形ABCD中,AD∥BC,∠ABC=90°,AD=9,AB=12,CD=20,判断哪一条线段是四边形ABCD的亮线?请你作出判断并说明理由.
(3)如图3,AC是闪亮四边形ABCD的唯一亮线,∠ABC=90°,∠D=60°,AB=4,BC=2,请直接写出线段AD的长.
(1)以下说法正确的是______(填写序号)
①正方形不可能是闪亮四边形;
②矩形中存在闪亮四边形;
③若一个菱形是闪亮四边形,则必有一个内角是60°.
(2)如图2,四边形ABCD中,AD∥BC,∠ABC=90°,AD=9,AB=12,CD=20,判断哪一条线段是四边形ABCD的亮线?请你作出判断并说明理由.
(3)如图3,AC是闪亮四边形ABCD的唯一亮线,∠ABC=90°,∠D=60°,AB=4,BC=2,请直接写出线段AD的长.

试卷分析
-
【1】题量占比
单选题:(10道)
填空题:(5道)
解答题:(6道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:3
5星难题:0
6星难题:4
7星难题:0
8星难题:5
9星难题:9