1.单选题- (共11题)
3.
如图,点M为▱ABCD的边AB上一动点,过点M作直线l垂直于AB,且直线l与▱ABCD的另一边交于点N.当点M从A→B匀速运动时,设点M的运动时间为t,△AMN的面积为S,能大致反映S与t函数关系的图象是( )


A.![]() | B.![]() | C.![]() | D.![]() |
4.
如图,排球运动员站在点O处练习发球,将球从O点正上方2m的A处发出,把球看成点,其运行的高度y(m)与运行的水平距离x(m)满足关系式y=a(x﹣k)2+h.已知球与D点的水平距离为6m时,达到最高2.6m,球网与D点的水平距离为9m.高度为2.43m,球场的边界距O点的水平距离为18m,则下列判断正确的是( )


A.球不会过网 | B.球会过球网但不会出界 |
C.球会过球网并会出界 | D.无法确定 |
7.
如图,平面直角坐标系中,矩形ABCD的边AB:BC=3:2,点A(3,0),B(0,6)分别在x轴,y轴上,反比例函数y=
的图象经过点D,则k值为( )



A.﹣14 | B.14 | C.7 | D.﹣7 |
9.
某区“引进人才”招聘考试分笔试和面试.其中笔试按60%、面试按40%计算加权平均数作为总成绩.吴老师笔试成绩为90分.面试成绩为85分,那么吴老师的总成绩为( )分.
A.85 | B.86 | C.87 | D.88 |
10.
郑州某中学在备考2018河南中考体育的过程中抽取该校九年级20名男生进行立定跳远测试,以便知道下一阶段的体育训练,成绩如下所示:

则下列叙述正确的是( )

则下列叙述正确的是( )
A.这些运动员成绩的众数是5 |
B.这些运动员成绩的中位数是2.30 |
C.这些运动员的平均成绩是2.25 |
D.这些运动员成绩的方差是0.072 5 |
2.填空题- (共1题)
3.解答题- (共4题)
13.
某公司生产的某种产品每件成本为40元,经市场调查整理出如下信息:
①该产品90天售量(n件)与时间(第x天)满足一次函数关系,部分数据如下表:

②该产品90天内每天的销售价格与时间(第x天)的关系如下表:

(1)求出第10天日销售量;
(2)设销售该产品每天利润为y元,请写出y关于x的函数表达式,并求出在90天内该产品的销售利润最大?最大利润是多少?(提示:每天销售利润=日销售量×(每件销售价格﹣每件成本))
(3)在该产品销售的过程中,共有多少天销售利润不低于5400元,请直接写出结果.
①该产品90天售量(n件)与时间(第x天)满足一次函数关系,部分数据如下表:

②该产品90天内每天的销售价格与时间(第x天)的关系如下表:

(1)求出第10天日销售量;
(2)设销售该产品每天利润为y元,请写出y关于x的函数表达式,并求出在90天内该产品的销售利润最大?最大利润是多少?(提示:每天销售利润=日销售量×(每件销售价格﹣每件成本))
(3)在该产品销售的过程中,共有多少天销售利润不低于5400元,请直接写出结果.
15.
如图,一次函数y=kx+b(k≠0)与反比例函数y=
(a≠0)的图象在第一象限交于A、B两点,A点的坐标为(m,4),B点的坐标为(3,2),连接OA、OB,过B作BD⊥y轴,垂足为D,交OA于C.若OC=CA,
(1)求一次函数和反比例函数的表达式;
(2)求△AOB的面积;
(3)在直线BD上是否存在一点E,使得△AOE是直角三角形,求出所有可能的E点坐标.

(1)求一次函数和反比例函数的表达式;
(2)求△AOB的面积;
(3)在直线BD上是否存在一点E,使得△AOE是直角三角形,求出所有可能的E点坐标.

试卷分析
-
【1】题量占比
单选题:(11道)
填空题:(1道)
解答题:(4道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:2
5星难题:0
6星难题:7
7星难题:0
8星难题:1
9星难题:6