北京市延庆县2017-2018学年七年级(上)期末数学试题

适用年级:初一
试卷号:590778

试卷类型:期末
试卷考试时间:2018/12/12

1.单选题(共7题)

1.
数轴是数形结合思想的产物.有了数轴以后,可以用数轴上的点直观地表示有理数,这样就建立起了“数”与“形”之间的联系.同时,数轴也是我们研究相反数、绝对值的直观工具.有理数a,b,c在数轴上的位置如图所示,则a的相反数是(  )
A.aB.bC.cD.﹣b
2.
若|m+3|+(n﹣2)2=0,则m﹣n的值为(  )
A.1B.﹣1C.5D.﹣5
3.
 =(  )
A.B.C.D.
4.
随着“一带一路”的建设推进,我国与一带一路沿线部分地区的贸易额加速增长.据统计,2017年我国与东南亚地区的贸易额将超过189 000 000万美元.将189 000 000用科学记数法表示应为(  )
A.189×106B.1.89×106C.18.9×107D.1.89×108
5.
元旦,是公历新一年的第一天.“元旦”一词最早出现于《晋书》:“颛帝以孟夏正月为元,其实正朔元旦之春”.中国古代曾以腊月、十月等的月首为元旦.1949年中华人民共和国以公历1月1日为元旦,因此元旦在中国也被称为“阳历年”.为庆祝元旦,人民商场举行促销活动,促销的方法是“消费超过100元时,所购买的商品按原价打8折后,再减少20元”.若某商品的原价为x元(x>100),则购买该商品实际付款的金额(单位:元)是(  )
A.80%x﹣20B.80%(x﹣20)C.20%x﹣20D.20%(x﹣20)
6.
下列计算中,正确的是( )
A.5a2b﹣4a2b=a2bB.a+b=abC.6a3﹣2a3=4D.2b2+3b3=5b5
7.
随着我国的发展与强大,中国文化与世界各国文化的交流与融合进一步加强.为了增进世界各国人民对中国语言和文化的理解,在世界各国建立孔子学院,推广汉语,传播中华文化.同时,各国学校之间的交流活动也逐年增加.在与国际友好学校交流活动中,小敏打算制做一个正方体礼盒送给外国朋友,每个面上分别书写一种中华传统美德,一共有“仁义礼智信孝”六个字.如图是她设计的礼盒平面展开图,那么“礼”字对面的字是(  )
A.仁B.义C.智D.信

2.填空题(共8题)

8.
比较大小:﹣2_____﹣5(填“>”或“<”或“=”).请你说明是怎样判断的_____.
9.
近似数2.780精确到______.
10.
按下面的程序计算:

如果输入x的值是正整数,输出结果是150,那么满足条件的x的值有______个
11.
写出﹣x2y3的一个同类项_____.
12.
关于x的方程的解与方程的解相同,则a的值是______.
13.
在我国古代数学著作《九章算术》中记载了一道有趣的数学问题:
“今有凫起南海,七日至北海;雁起北海,九日至南海.今凫雁俱起,问何日相逢?”意思是:野鸭从南海起飞,7天飞到北海;大雁从北海起飞,9天飞到南海.野鸭与大雁从南海和北海同时起飞,经过几天相遇.设野鸭与大雁从南海和北海同时起飞,经过x天相遇,根据题意,列方程_____.
14.
已知∠α+∠β=90°,且∠α=36°40′,则∠β=_____.
15.
生命在于运动.运动渗透在生命中的每一个角落,运动的好处就在于让我们的身体保持在健康的状态.小明同学用手机软件记录了11月份每天健步走的步数(单位:万步),将记录结果绘制成了如图所示的统计图.在每天所走的步数这组数据中,中位数是_____万步.

3.解答题(共11题)

16.
阅读材料.
点M,N在数轴上分别表示数m和n,我们把m,n之差的绝对值叫做点M,N之间的距离,即MN=|m﹣n|.如图,在数轴上,点A,B,O,C,D的位置如图所示,则DC=|3﹣1|=|2|=2;CO=|1﹣0|=|1|=1;BC=|(﹣2)﹣1|=|﹣3|=3;AB=|(﹣4)﹣(﹣2)|=|﹣2|=2.

(1)OA=  ,BD=  
(2)|1﹣(﹣4)|表示哪两点的距离?
(3)点P为数轴上一点,其表示的数为x,用含有x的式子表示BP=  ,当BP=4时,x=  ;当|x﹣3|+|x+2|的值最小时,x的取值范围是  
17.
计算:
(1)7+(﹣28)﹣(﹣9)
(2)
(3)﹣23÷8﹣.
18.
阅读材料.
2017年10月18日,第十九次全国代表大会在人民大会堂隆重开幕.十九大提出,既要创造更多物质财富和精神财富以满足人民日益增长的美好生活需要,也要提供更多优质生态产品以满足人民日益增长的优美生态环境需要.必须坚持节约优先、保护优先、自然恢复为主的方针,形成节约资源和保护环境的空间格局、产业结构、生产方式、生活方式,还自然以宁静、和谐、美丽.
为了保护环境节约水资源,我市按照居民家庭年用水量实行阶梯水价,水价分档递增.居民用户按照以下的标准执行:第一阶梯上限180立方米,水费价格为5元/每立方米;第二阶梯为181﹣260立方米之间,水费价格7元/每立方米;第三阶梯为260立方米以上用水量,水价为9元/每立方米.如表所示:
供水类型
阶梯
户年用水量
(立方米)
水价
其中
水费
水资源费
污水处理费
自来水
第一阶梯
0﹣180(含)
5
2.07
1.57
1.36
第二阶梯
181﹣260(含)
7
4.07
第三阶梯
260以上
9
6.07
 
根据以上材料解决问题:
若小明家在2017年共用水200立方米,准备1000元的水费够用吗?说明理由.
19.
阅读材料.
我们知道,1+2+3+…+n=,那么12+22+32+…+n2结果等于多少呢?
在图1所示三角形数阵中,第1行圆圈中的数为1,即12,第2行两个圆圈中数的和为2+2,即22,…;第n行n个圆圈中数的和为n+n+n+…+n,即n2.这样,该三角形数阵中共有个圆圈,所有圆圈中数的和为12+22+32+…+n2

(规律探究)
将三角形数阵经两次旋转可得如图2所示的三角形数阵,观察这三个三角形数阵各行同一位置圆圈中的数(如第n﹣1行的第一个圆圈中的数分别为n﹣1,2,n),发现每个位置上三个圆圈中数的和均为 ,由此可得,这三个三角形数阵所有圆圈中数的总和为3(12+22+32+…+n2)= ,因此,12+22+32+…+n2=
(解决问题)
根据以上发现,计算:的结果为
20.
先化简,再求值:2(x2+2x﹣2)﹣(x2﹣2x﹣1),其中x=﹣
21.
解方程:
(1)﹣2x+9=3(x﹣2)
(2)1+.
22.
甲班有45人,乙班有39人.现在需要从甲、乙班各抽调一些同学去参加歌咏比赛.如果从甲班抽调的人数比乙班多1人,那么甲班剩余人数恰好是乙班剩余人数的2倍.请问从甲、乙两班各抽调了多少参加歌咏比赛?
23.
如图,点A,B,C是平面上三个点.
(1)按下列要求画图:
①画线段AB;②画射线CB;③反向延长线段AB;
④过点B作直线AC的垂线BD,垂足为点D;
(2)请你测量点B到直线AC的距离,大约是 cm.(精确到0.1cm)
24.
如图,点C是线段AB上的一点,延长线段 AB到点D,使BD=CB.
(1)请依题意补全图形;
(2)若AD=7,AC=3,求线段DB的长.
25.
填空,完成下列说理过程
如图,点A,O,B在同一条直线上,OD,OE分别平分∠AOC和∠BOC.求∠DOE的度数.
解:因为OD是∠AOC的平分线,
所以∠COD=∠AOC.
因为OE是∠BOC 的平分线,
所以 =∠BOC.
所以∠DOE=∠COD+∠COE=(∠AOC+∠BOC)=∠AOB= °.
26.
如图,点P,点Q分别代表两个村庄,直线l代表两个村庄中间的一条公路.根据居民出行的需要,计划在公路l上的某处设置一个公交站.
(1)若考虑到村庄P居住的老年人较多,计划建一个离村庄P最近的车站,请在公路l上画出车站的位置(用点M表示),依据是
(2)若考虑到修路的费用问题,希望车站的位置到村庄P和村庄Q的距离之和最小,请在公路l上画出车站的位置(用点N表示),依据是
试卷分析
  • 【1】题量占比

    单选题:(7道)

    填空题:(8道)

    解答题:(11道)

  • 【2】:难度分析

    1星难题:0

    2星难题:0

    3星难题:0

    4星难题:1

    5星难题:0

    6星难题:22

    7星难题:0

    8星难题:1

    9星难题:2