1.单选题- (共10题)
5.
如图所示,在平面直角坐标系中,半径均为1个单位长度的半圆O1、O2、O3,…,组成一条平滑的曲线,点P从原点O出发,沿这条曲线向右运动,速度为每秒
个单位长度,则第2019秒时,点P的坐标是( )



A.(2018,0) | B.(2019,﹣1) | C.(2018,1) | D.(2019,0) |
2.选择题- (共2题)
3.填空题- (共5题)
14.
一般地,我们把研究对象统称为元素,把一些元素组成的总体称为集合,一个给定集合中的元素是互不相同的,也就是说,集合中的元素是不重复出现的,如一组数1,2,3,4就可以构成一个集合,记为A={1,2,3,4},类比实数有加法运算,集合也可以相加.定义:集合A与集合B中的所有元素组成的集合称为集合A与集合B的和,记为A+B.若A={0,1,7},B={﹣3,0,1},则A+B=_____.
4.解答题- (共9题)
20.
建华小区准备新建50个停车位,以解决小区停车难的问题.已知新建1个地上停车位和1个地下停车位需0.5万元;新建3个地上停车位和2个地下停车位需1.1万元.
(1)该小区新建1个地上停车位和1个地下停车位各需多少万元?
(2)若该小区预计投资金额超过10万元而不超过11万元,则共有几种建造方案?
(3)已知每个地上停车位月租金100元,每个地下停车位月租金300元. 在(2)的条件下,新建停车位全部租出.若该小区将第一个月租金收入中的3600元用于旧车位的维修,其余收入继续兴建新车位,恰好用完,请直接写出该小区选择的是哪种建造方案?
(1)该小区新建1个地上停车位和1个地下停车位各需多少万元?
(2)若该小区预计投资金额超过10万元而不超过11万元,则共有几种建造方案?
(3)已知每个地上停车位月租金100元,每个地下停车位月租金300元. 在(2)的条件下,新建停车位全部租出.若该小区将第一个月租金收入中的3600元用于旧车位的维修,其余收入继续兴建新车位,恰好用完,请直接写出该小区选择的是哪种建造方案?
23.
如图,在平面直角坐标系中,已知A(a,0),B(b,0),其中a,b满足|a+1|+(b﹣3)2=0.
(1)填空:a= ,b= ;
(2)如果在第三象限内有一点M(﹣2,m),请用含m的式子表示△ABM的面积;
(3)在(2)条件下,当
时,在y轴上有一点P,使得△BMP的面积与△ABM的面积相等,请求出点P的坐标.
(1)填空:a= ,b= ;
(2)如果在第三象限内有一点M(﹣2,m),请用含m的式子表示△ABM的面积;
(3)在(2)条件下,当


24.
如图,已知直线l1∥l2,直线l3和直线l1、l2交于点C和D,在直线l3上有点P(点P与点C、D不重合),点A在直线l1上,点B在直线l2上.
(1)如果点P在C、D之间运动时,试说明∠1+∠3=∠2;
(2)如果点P在直线l1的上方运动时,试探索∠1,∠2,∠3之间的关系又是如何?
(3)如果点P在直线l2的下方运动时,试探索∠PAC,∠PBD,∠APB之间的关系又是如何? (直接写出结论)
(1)如果点P在C、D之间运动时,试说明∠1+∠3=∠2;
(2)如果点P在直线l1的上方运动时,试探索∠1,∠2,∠3之间的关系又是如何?
(3)如果点P在直线l2的下方运动时,试探索∠PAC,∠PBD,∠APB之间的关系又是如何? (直接写出结论)

25.
为了解学生体育训练的情况,某市从全市九年级学生中随机抽取部分学生进行了一次体育科目测试(把测试结果分为四个等级:A级、B级、C级、D级),并就按那个测试结果绘成了如下两幅不完整的统计图,请根据统计图中的信息解答下列问题:

(1)本次抽样测试的学生人数是 ;
(2)扇形图中∠α的度数是 ,并把条形统计图补充完整;
(3)对A,B,C,D四个等级依次赋分为90,75,65,55(单位:分),比如:等级为A的同学体育得分为90分,…,依此类推.该市九年级共有学生32000名,如果全部参加这次体育测试,估计该市九年级不及格(即60分以下)学生的人数.

(1)本次抽样测试的学生人数是 ;
(2)扇形图中∠α的度数是 ,并把条形统计图补充完整;
(3)对A,B,C,D四个等级依次赋分为90,75,65,55(单位:分),比如:等级为A的同学体育得分为90分,…,依此类推.该市九年级共有学生32000名,如果全部参加这次体育测试,估计该市九年级不及格(即60分以下)学生的人数.
试卷分析
-
【1】题量占比
单选题:(10道)
选择题:(2道)
填空题:(5道)
解答题:(9道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:2
5星难题:0
6星难题:12
7星难题:0
8星难题:4
9星难题:5