1.单选题- (共10题)
4.
某天,小明走路去学校,开始他以较慢的速度匀速前进,然后他越走越快走了一段时间,最后他以较快的速度匀速前进达到学校.小明走路的速度v(米/分钟)是时间t(分钟)的函数,能正确反映这一函数关系的大致图像是( )
A.![]() | B.![]() |
C.![]() | D.![]() |
5.
甲、乙两车从A地出发,沿同一路线驶向B地. 甲车先出发匀速驶向B地,40 min后,乙车出发,匀速行驶一段时间后,在途中的货站装货耗时半小时. 由于满载货物,为了行驶安全,速度减少了50 km/h,结果与甲车同时到达B地. 甲乙两车距A地的路程y(km)与乙车行驶时间x(h)之间的函数图象如图所示,则下列说法:①a=4.5;②甲的速度是60 km/h;③乙出发80 min追上甲;④乙刚到达货站时,甲距B地180 km.其中正确的有( )

A. 1个 B. 2个 C. 3个 D. 4个

A. 1个 B. 2个 C. 3个 D. 4个
7.
为了调查某校同学的体质健康状况,随机抽查了若干名同学的每天锻炼时间如表:
则关于这些同学的每天锻炼时间,下列说法错误的是( )
每天锻炼时间(分钟) | 20 | 40 | 60 | 90 |
学生数 | 2 | 3 | 4 | 1 |
则关于这些同学的每天锻炼时间,下列说法错误的是( )
A.众数是60 | B.平均数是21 | C.抽查了10个同学 | D.中位数是50 |
8.
如图,在给定的一张平行四边形纸片上作一个菱形.甲、乙两人的作法如下:
甲:连接AC,作AC的垂直平分线MN分别交AD,AC,BC于M,O,N,连接AN,CM,则四边形ANCM是菱形.
乙:分别作∠A,∠B的平分线AE,BF,分别交BC,AD于E,F,连接EF,则四边形ABEF是菱形.
根据两人的作法可判断()

甲:连接AC,作AC的垂直平分线MN分别交AD,AC,BC于M,O,N,连接AN,CM,则四边形ANCM是菱形.
乙:分别作∠A,∠B的平分线AE,BF,分别交BC,AD于E,F,连接EF,则四边形ABEF是菱形.
根据两人的作法可判断()

A.甲正确,乙错误 | B.乙正确,甲错误 | C.甲、乙均正确 | D.甲、乙均错误 |
10.
下列说法中,不正确的是( )
A.两组对边分别平行的四边形是平行四边形 |
B.对角线互相平分且垂直的四边形是菱形 |
C.一组对边平行另外一组对边相等的四边形是平行四边形 |
D.有一组邻边相等的矩形是正方形 |
2.填空题- (共4题)
12.
如图,在平面直角坐标系中,矩形纸片OABC的顶点A,C分别在x轴,y轴的正半轴上,将纸片沿过点C的直线翻折,使点B恰好落在x轴上的点B′处,折痕交AB于点D.若OC=9,
,则折痕CD所在直线的解析式为____.


3.解答题- (共8题)
16.
如图,在平面直角坐标系xOy中,一次函数
与x轴交于点A,与y轴交于点B.将△AOB沿过点B的直线折叠,使点O落在AB边上的点D处,折痕交x轴于点E.
(1)求直线BE的解析式;
(2)求点D的坐标;

(1)求直线BE的解析式;
(2)求点D的坐标;

17.
某小区有一块四边形空地ABCD,如图所示,现计划在这块地上种植每平方米60元的草坪用以美化环境,施工人员测得(单位:米):AB=3,BC=4,CD=12,DA=13,∠B=90°,求小区种植这种草坪需多少钱?

19.
在正方形ABCD中,过点A引射线AH,交边CD于点H(点H与点D不重合),通过翻折,使点B落在射线AH上的点G处,折痕AE交BC于点E,延长EG 交CD于点F.如图①,当点H与点C重合时,易证得FG=FD(不要求证明);如图②,当点H为边CD上任意一点时,求证:FG=FD.
【应用】在图②中,已知AB=5,BE=3,则FD= ,△EFC的面积为 .(直接写结果)
【应用】在图②中,已知AB=5,BE=3,则FD= ,△EFC的面积为 .(直接写结果)

20.
某公司为了了解员工每人所创年利润情况,公司从各部抽取部分员工对每年所创利润进行统计,并绘制如图1,图2统计图.

(1)将图2补充完整;
(2)本次共抽取员工 人,每人所创年利润的众数是 万元,平均数是 万元,中位数是 万元;
(3)若每人创造年利润10万元及(含10万元)以上为优秀员工,在公司1200员工中有多少可以评为优秀员工?

(1)将图2补充完整;
(2)本次共抽取员工 人,每人所创年利润的众数是 万元,平均数是 万元,中位数是 万元;
(3)若每人创造年利润10万元及(含10万元)以上为优秀员工,在公司1200员工中有多少可以评为优秀员工?
21.
某商店准备购进一批电冰箱和空调,每台电冰箱的进价比每台空调的进价多400元,商店用8000元购进电冰箱的数量与用6400元购进空调的数量相等.
(1)求每台电冰箱与空调的进价分别是多少?
(2)已知电冰箱的销售价为每台2100元,空调的销售价为每台1750元.若商店准备购进这两种家电共100台,其中购进电冰箱x台(33≤x≤40),那么该商店要获得最大利润应如何进货?
(1)求每台电冰箱与空调的进价分别是多少?
(2)已知电冰箱的销售价为每台2100元,空调的销售价为每台1750元.若商店准备购进这两种家电共100台,其中购进电冰箱x台(33≤x≤40),那么该商店要获得最大利润应如何进货?
试卷分析
-
【1】题量占比
单选题:(10道)
填空题:(4道)
解答题:(8道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:1
5星难题:0
6星难题:12
7星难题:0
8星难题:1
9星难题:8