1.单选题- (共8题)
4.
某村耕地总面积为50公顷,且该村人均耕地面积y(单位:公顷/人)与总人口x(单位:人)的函数图象如图所示,则下列说法正确的是( )


A.该村人均耕地面积随总人口的增多而增多 |
B.该村人均耕地面积y与总人口x成正比例 |
C.若该村人均耕地面积为2公顷,则总人口有100人 |
D.当该村总人口为50人时,人均耕地面积为1公顷 |
7.
为了了解我市2019年中考数学学科各分数段成绩分布情况,从中抽取150名考生的中考数学成绩进行统计分析。在这个问题中,样本是指( )
A.150 | B.被抽取的150名考生 |
C.我市2019年中考数学成绩 | D.被抽取的150名考生的中考数学成绩 |
2.填空题- (共9题)
14.
如图,点A,B在反比例函数y=
(x>0)的图象上,点C,D在反比例函数y=
(k>0)的图象上,AC∥BD∥y轴,已知点A,B的横坐标分别为1,2,△OAC与△ABD的面积之和为
,则k的值为_____.




3.解答题- (共8题)
20.
某超市预测某饮料有发展前途,用1600元购进一批饮料,面市后果然供不应求,又用6000元购进这批饮料,第二批饮料的数量是第一批的3倍,但单价比第一批贵2元.
(1)第一批饮料进货单价多少元?
(2)若二次购进饮料按同一价格销售,两批全部售完后,获利不少于1200元,那么销售单价至少为多少元?
(1)第一批饮料进货单价多少元?
(2)若二次购进饮料按同一价格销售,两批全部售完后,获利不少于1200元,那么销售单价至少为多少元?
21.
如图,四边形ABCD的四个顶点分别在反比例函数
与
(x>0,0<m<n)的图象上,对角线BD//y轴,且BD⊥AC于点P.已知点B的横坐标为4.
(1)当m=4,n=20时.
①若点P的纵坐标为2,求直线AB的函数表达式.
②若点P是BD的中点,试判断四边形ABCD的形状,并说明理由.
(2)四边形ABCD能否成为正方形?若能,求此时m,n之间的数量关系;若不能,试说明理由.


(1)当m=4,n=20时.
①若点P的纵坐标为2,求直线AB的函数表达式.
②若点P是BD的中点,试判断四边形ABCD的形状,并说明理由.
(2)四边形ABCD能否成为正方形?若能,求此时m,n之间的数量关系;若不能,试说明理由.

22.
已知A(n,-2),B(1,4)是一次函数y=kx+b的图象和反比例函数y=
的图象的两个交点,直线AB与y轴交于点C.
(1)求反比例函数和一次函数的关系式;
(2)求△AOC的面积;
(3)求不等式kx+b-
<0的解集(直接写出答案).

(1)求反比例函数和一次函数的关系式;
(2)求△AOC的面积;
(3)求不等式kx+b-


23.
已知四边形ABCD是菱形,AB=4,∠ABC=60°,∠EAF的两边分别与射线CB,DC相交于点E,F,且∠EAF=60°.

(1)如图1,当点E是线段CB的中点时,直接写出线段AE,EF,AF之间的数量关系;
(2)如图2,当点E是线段CB上任意一点时(点E不与B、C重合),求证:BE=CF;
(3)如图3,当点E在线段CB的延长线上,且∠EAB=15°时,求点F到BC的距离.

(1)如图1,当点E是线段CB的中点时,直接写出线段AE,EF,AF之间的数量关系;
(2)如图2,当点E是线段CB上任意一点时(点E不与B、C重合),求证:BE=CF;
(3)如图3,当点E在线段CB的延长线上,且∠EAB=15°时,求点F到BC的距离.
24.
某学校八年级学生举行朗诵比赛,全年级学生都参加,学校对表现优异的学生进行表彰,设置—、二、三等奖和进步奖共四个奖项,赛后将八年级(1)班的获奖情况绘制成如图所示的两幅不完整的统计图,请报据图中的信息,解答下列问题:

(1)八年级(1)班共有 名学生;
(2)将条形图补充完整;在扇形统计图中,“二等奖”对应的扇形的圆心角度数 ;
(3)如果该八年级共有800名学生,请估计荣获一、二、三等奖的学生共有多少名.


(1)八年级(1)班共有 名学生;
(2)将条形图补充完整;在扇形统计图中,“二等奖”对应的扇形的圆心角度数 ;
(3)如果该八年级共有800名学生,请估计荣获一、二、三等奖的学生共有多少名.
试卷分析
-
【1】题量占比
单选题:(8道)
填空题:(9道)
解答题:(8道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:1
5星难题:0
6星难题:15
7星难题:0
8星难题:3
9星难题:6